Designing Games with Game Maker

version 4.3 (November 17, 2002)

Mark Overmars

Table of Contents

Chapter 1 ~ Soyou want to create your own COMpPULEr gamesS........ccccvveereeervesreennens 5
(@ aF=To1 (= g2 1 0 1S = 11 =4 o o OSSPSR 6
(@ aF=To1 (= SRS SO0 | { 1 01U 11 [0] 1SS 7
Chapter 4 The global IdEa.........ooi i 8
Chapter 5 Let uslook at an eXample.......cccveeererieieereeiesee e 10
Chapter 6 Theglobal user INtErface........cooeeiiiir e 12
6.1 FlE MENU..ciiiiie e 12
6.2 Bt MENU ..o e 14
IR T o (o I 1 0 U S 14
6.4 WINCOW IMENU...c.uiiiiiiiiiieieiiesie ettt sttt sae b b ne e 14
B.5 HEIP MENU...oooeee e 14
6.6 ThereSOUrCE EXPIOTENoouiieiiiiieeie ettt 15
Chapter 7 DEfiNING SPIITESiieeitieie et s ees 16
Chapter 8 SOUNAS AN MUSIC.....coviiiiiieieeie e e 18
Chapter 9 BackgrOUNGS.......ccuoieeiuirieiiesieeiesee et 19
Chapter 10 DefiNiNg ODJEAS.....cceiiieeeee e e 20
(@ gF=T o] = g R = 0| SRR 22
Chapter 12 ACHIONS......i it e e s ae e e be e sre e ere e reeaanas 27
121 MOVEMENE BCHIONS. ...c.eiieiesieeieeiesieesieeeestee e eee e steeeesre e teeneesreenseeneesseensenneennes 27
12,2 Object related aCtiONS.........ccceieeieerieeieseereeee e see e te e ae e seeeneennes 29
12.3 MisSCElanNEOUS GCLIONScoiuiriiiieeieeee et e 30
I O U 1< o] SR 33
125 Drawing 8CHONScccooiiirieriesieeiesieeie ettt st a e b e ne e e 36
126 Coderelated aCtiONS........ccoceiiieriirieiee et 37
12.7 Using expressions and VariableS...........ooeeeriiieenenieneese e s 38
Chapter 13 Creating FOOMS......ccuiiiieiie et et e see e e rre e sreeebe e saeeese e sreesreesreeaans 39
131 AdAiNG INSEANCES.......coiuiierieiterieeieeie ettt e b e ne e 40
T = (00 4 1K= 11 0 SO 40
13.3 Setting the background...........ccceeiieiiii i 41
Chapter 14 MOre about SPIItES.....cvcii e 42
141 EditiNg YOUr SPITESc.coiuiieiiieiieeiieieeee ettt 42
14.2 Editing individual SUD-TMAJESccceeeerieeiecee e 47
14.3 Advanced SPrite SEEINGSeevveeieiieecee e 48
Chapter 15 More about souNdS and MUSICccveieieeiieeie e 50
Chapter 16 More about backgroundsccceeveeiieieeieeie e 51
Chapter 17 MoOre about ODJECES........ccvieeieeeceese e 52
50 R I = o o PR 52
17.2 PerSiStent ODJECES........oouiiiesieriee e 52
17.3 PaArENES..ei et 52
A V= SRS RS 53

Chapter 18 MOre abOuUt FOOMS........cccuiiieerieeie et erte st e e sreeneeens 54

18.1 AdVANCED SELLINGS ...coviieeeiteeieeie ettt sttt be b sneenes 54
18.2 AdAING LHES...c.eeieieeeeee e 54
18.3 VIBWS oottt sttt st bbbttt b bbb et 56
Chapter 19 PaliS ..o n e ens 58
19.1 DefiNING PANS......cccviiiiicciie e 58
19.2 AsSIgning PathSto ODJECESccuiiiiiieeeer e 59
19.3 ThePath @VENTcceeececee e a e nns 60
(O aT=T 1 (= g S o] o] 5T 61
Chapter 21 Game iNfOr MatiON........cocoviiireeieee e 63
Chapter 22 GaME OPLIONSeeeeeiiesiesie ettt b e e 64
P R € =0 ToxsY o o) (0] S 64
222 KEY OPLIONS ...ttt ettt e b e e sne e sae e 65
22.3 INLEraCtioN OPLIONS.......eiveiirtirieeieeieee ettt sttt s bt besae e ne e 66
224 SCOFE OPLIONS.....cccvieeeeteeiteeeesteesteeeesseesteeeesseesseaseesseesseaseesseenseesessseesesseesseenseans 66
R ST o 7='e ([gTe o o1 o 0 ST RS R 66
22.6 EITON OPLIONS ..ottt sttt sttt sb et snesaesae e e e 67
Chapter 23 Speed CONSIAEN ALIONSoouererieieieieriesie et 68
Chapter 24 Distributing YOUr Qame..........ccoooeieiiiiereeeeeeeee e 69
Chapter 25 The GameMaker Language (GML)cooveiriiiiieeeee e 70
P2 T R N o = PP P SR PR TP 70
25.2 VaATADIES ..ot e 70
25.3 ASSIONIMENTS.eeiiiiiiiiiierie ettt beebeeseesbe e te et e sbeesesneeseeeneeens 71
25,4 EXPIESSIONScoueiueenieiitesiestesieeseeseeee s e ssessessesbesaesseeseeseess et e tessesbesaesaesaesneeneennas 71
255 EXUrAVATADIES.. ..o s 71
25.6 Addressing variables in other INStaNCES........ccccceevieiiiee s 72
P2 T A N 1 - £ T PR PSR PRPPPRP 73
25.8 I STAEMENT ... 74
25.9 REPEEL SIAEMENToiiiiiiiciiie e e 74
2510 WNhIl@ STaBMENL.....cceeiieeiecieesieeee ettt sre e 74
124 T I R oo G = (= 111 o | PRI 75
2512 EXIt StAOMENL....ceiiiieiiesieeeeeeee ettt 75
25,13 FUNCLONS....ceiiieiieitcesieee ettt b et st sbe et eneenre e e 76
P S] o L= SO U PR PRURURURPRPRN 76
2515 With CONSITUCLIONSoviviiiiiiniceie ettt 76
2516 COMMENL ...ttt s e s e e e be e s e e e ne e ssreenneesnneesneesnneenns 78
25,07 PaSCal SYI@...uecieeee et 78
25.18 Functions and variableS in GML.........cccoveiiienininieeese e 78
Chapter 26 Computing thingS.........cooiiiiiii e 79
26.1 CONSLANES......eieiieieteeiee et s e s e e be e s e e e ne e sareenne e s nn e e reesnre e 79
26.2 Real-VAlUES TUNCLIONScoiiieieiecesee e 79
26.3 String handling fUNCHIONScoiiiiieiece s 80
Chapter 27 GML: GAMEPIAY ...ooveiiriiiirieeieeeeeee e 81
P25 Y/ o Y o = o S 81

B 1 15 = (6 << 83

A T 11111 0o U RTORPP 84
274 ROOMS BNG SCOME.....ueeieeeieeiesieesteeeesseesteeeesseesseeseesseessessessseesseeseesseessesseesseensenns 85
27.5 GENENELiNG EVENTS......cceeiieeie et eeesee e ee st re e s e tesreesreere e e e sreesesneesreenneans 87
27.6 Miscellaneous variables and fUNCLIONScocoeiieeiini s 88
Chapter 28 GML: USEr INTEraCtioN.......cooeiiiirieniieie e 91
P22 RN 01V 1 [QS T o oo SO 93
Chapter 29 GML: Game graphiCs..........cuiieiiiiieereeee e 9
29.1 WINCOW N0 CUISOKouviiiiiniinieeiieee st ste i bttt sae st st sne s eneenees 94
A S o 1 (== 010 1070 = R S 9
20.3 BACKGIOUNGS.......ceiieiiieiiietisie ettt se ettt s et b b snesbe e se e 97
2 S T =SSR 99
29.5 Drawing fUNCLIONS..........ccoeieiiececie et 100
P2 G I VAT L TSR 103
P2 A 0 0] 104
29.8 RePaiNting the SCrEeN........cccocie it 105
Chapter 30 GML: SoUNd AN MUSIC ..ccuevieeeiieeiesieeie e see e eee e sae e sae e snee e 106
Chapter 31 GML: Splash screens, highscores, and other pop-ups........ccccceeveene.. 109
Chapter 32 GML: Files, registry, and executing programscccceeeeereereeseenenns 112
Chapter 33 GML: Multiplayer gamesS..........ccooeerenineneneeeeeeee s 116
33.1 Setting UP @ CONNECION........oieeieeie et 116
33.2 Creating and jJOINING SESSIONS......ccouererruerrierersieeseeseesseesteseesreesseseessesssesessees 117
3.3 PlAYEIS. bbbt 118
334 ShAred dala........ccooeieeiiiieriese s 118
335 IMIBSSA0ES ... ettt h et be e e e b e e n e e Re e eare e neeenneenneeas 119
Chapter 34 GMVL: USING DLL'S ..ciiiiciiecie ettt 121

Chapter 1 So you want to create your own computer

games

Playing computer games is fun. But it is actually more fun to design your own computer
games and let other people play them. Unfortunately, creating computer games is not
easy. Commercial computer games as you buy nowadays typically take one to three years
of development with teams of anywhere between 10 and 50 people. Budgets easily reach
in the millions of dollars. And all these people are highly experienced: programmers, art
designers, sound technicians, etc.

So does this mean that it is impossible to create your own computer games? Fortunately
not. Of course you should not expect that you could create your own Quake or Age of
Empires within a few weeks. But that is also not necessary. A bit smpler games, like
Tetris, Pacman, Space Invaders, etc. are aso fun to play and alot easier to create.
Unfortunately they still require good programming skills to handle the graphics, sounds,
user interaction, etc.

But here come Game Maker. Game Maker has been written to make it alot easier to
create such games. There is no need to program. An intuitive and easy to use drag-and-
drop interface allows you to create your own games very quickly. Y ou can import and
create images, sprites (animated images) and sounds and use them. Y ou easily define the
objects in your game and indicate their behavior. And you can define appealing rooms
with scrolling backgrounds in which the game take place. And if you want full control
there is actually a smple to use programming language built into Game Maker that gives
you full control over what is happening in your game.

Game Maker focuses on two-dimensional games. So no 3-D worlds like Quake. But
don't let this put you down. Many great games, like Age of Empires, the Command &
Conquer series, and Diablo use two-dimensional sprite technology, even though they
look very 3-dimensional. And designing two-dimensional gamesis alot easier and faster.

Probably the best part is that Game Maker can be used free of charge. And there are no
restrictions on the games you create withit. No nag screen, and you can even sell them if
you like. See the enclosed license agreement for more details.

This book will tell you all you need to know about Game Maker and how you can create
your own games with it. Please realize that, even with a program like Game Maker,
designing computer games is not completely trivial. There are too many aspects that are
important: game play, graphics, sounds, user interaction, etc. Start with easy examples
and you will redlize that creating games is great fun. Also check the web site

http://www.cs.uu.nl/~markov/gmaker/index.html

and the forum there for lots of examples, ideas, and help. And soon you will become a
master game maker yourself. Enjoy.

Chapter 2 Installation

Y ou probably aready did this but if not, here is how to install Game Maker. Simply run
the program grmaker . exe. Follow the orntscreen instructions. Y ou can install the
program anywhere you like but you best follow the default suggestions given Once
installation is completed, in the Start menu you will find a new program group where you
can start Game Maker and read the documentation. Besides the Game Maker program
also the documentation is installed, together with the help file.

Within the ingtallation folder (default C: / Progr am Fi | es/ Gare_Maker 4/) there will
be a number of other folders:
exanpl es: contains a number of example games, for you to check and/or
change.
sprit es: contains a collection of freeware (animated) sprites that can be used in
your games. The following people donated sprites:

0 Primamania, see http://prima mania.fateback.com/.

0 Morphosis, see http://www.geocities.com/morphosisgames/.

o Billy McQuown.

backgr ounds: contains a number of freeware background images that you can
use in your games. It also contains a number of tile sets:

o platforml. bnpandpl at f or n2. bnp aretile setsfor platform
games. They are copyright Ari Feldman. See the website
http://www.arifeldman.com/free/spritelib.html for more information.

o rpgl. bp andr pg2. bnp are useful for strategy games. They are
reduced version of the sets created by Hermann Hillmann as part of the
charpack. See the charpack website
http://www.vbexplorer.com/charpackl.asp for more information.

o km bnp, pk. bnp and ps. bnp were created by em.b.u. See
http://www.embu.cjb.net for conditions of use and other tile sets.

sounds: contains a number of freeware sound effects that you can use in your
games.
scri pt s: contains some useful scripts (see Chapter 19).
The sprites, backgrounds, sounds, and tiles are not directly part of Game Maker but were
taken from freeware collections.

Game Maker requires amodern Pentium PC running Windows 95, 98, NT, 2000, Me, or
later. It requires a screen resolution of at least 800x600 and 65000 (16-bit) colors. It
requires DirectX to be installed on your computer. When designing and testing games,
memory requirements are pretty high (at least 32 MB and preferably more). When just
running games, the memory requirements are a lot less severe and depend alot on the
type of game.

Chapter 3 Contributions

Game Maker can be used free of charge. There are no restrictions on the games you
create with it. No nag screens are shown and you can even sell the games if you like. See
the enclosed license agreement for more details.

But developing Game Maker does cost time and money. To keep Game Maker free in the
future we ask you, if possible, to make a donation to help its further development. A
donation of for example $10 or 10 Euro (or more) would be most appreciated. There are
three ways in which you can make a donation.

PayPal or Credit Card

The easiest way is to use a PayPal account or use your credit card. (Your credit card
information will not be revealed to us!) To this end in the help menu click on the item
contributions. Click on the link electronic donations and follow the instructions.

Cash

If you do not have a PayPal account or do not want to donate by credit card, you can also
send your donation in cash. To this end get $10 or 10 Euro (or more) or an equivalent
amount in your own currency in banknotes (no coins). Put them in an envelope,
concealed with a piece of paper, and include your name and email for a confirmation.
Send the envelope (by air or surface mail) to

Game Maker
Magnuslaan 6
3571 ET Utrecht
the Netherlands

Transfer to bank account

When you live in the Netherlands you can also transfer your donation to Postbank giro
account 3720842, under the name of Mark Overmars in Utrecht, the Netherlands. Please
indicate your email address for a confirmation. Y ou can aso use this account when
transfering money from a different country but thisis rather expensive. It is
recommended that you use cash or a credit card instead.

Y our support is highly appreciated.

Chapter 4 The global idea

Before delving into the possibilities of Game Maker it is good to first get a feeling for the
global idea behind the program. Games created with Game Maker take place in one or
more rooms (Rooms are flat, not 3D, but they can contain 3D-looking graphics.) In these
rooms you place objects which you can define in the program. Typical objects are the
walls, moving balls, the main character, monsters, etc. Some objects, like walls, just sit
there and don’t do anything. Other objects, like the main character, will move around and
react to input from the player (keyboard, mouse, joystick) and to each other. For example,
when the main character meets a monster he might die. Objects are the most important
ingredients of games made with Game Maker, so let ustalk a bit more about them.

First of all, most objects need some image to make them visible on the screen. Such
images are call sprites. A sprite is often not a single image but a set of images that are
shown one after the other to create an animation. In this way it looks like the character
walks, aball rotates, a spaceship explodes, etc. During the game the sprite for a particular
object can change. (So the character can look different when it walks to the left or to the
right.) You can create you own sprite in Game Maker or load them from files (e.g.
animated GIF' s).

Certain things will happen to objects. Such happenings are called events. Objects can take
certain actions when events happen. There are a large number of different events that can
take place and a large number of different actions that you can let your objects take. For
example, there is a creation event when the object gets created. (To be more precise,
when an instance of an object gets created; there can be multiple instances of the same
object.) For example, when aball object gets created you can give it some motion action
such that is starts moving. When two object meet you get a collision event. In such a case
you can make the ball stop or reverse direction. Y ou can also play a sound effect. To this
end Game Maker lets you define sounds. When the player presses a key on the keyboard
there is a keyboard event, and the object can take an appropriate action, like moving in
the direction indicated. | hope you get the idea. For each object you design you can
indicate actions for various events, in this way defining the behavior of the object.

Once you have defined your objects it is time to define the rooms in which they will live.
Rooms can be used for levelsin your game or to check out different places. There are
actions to move from one room to another. Rooms first of all have a background. This
can be asimple color or an image. Such background images can be created in Game
Maker or you can load them from files. (The background can do alot of things but for the
time being, just consider it as something that makes the rooms look nice.) Next you can
place the objects in the room. Y ou can place multiple instances of the same object in a
room. So, for example, you need to define just one wall object and can use it at many
places. Also you can have multiple instances of the same monster objects, as long as they
should have the same behavior.

Now you are ready to run the game. The first room will be shown and objects will come
to life because of the actions in their creation events. They will start reacting to each

other due to actions in collision events and they can react to the player using the actions
in their keyboard or mouse events.

So in summary, the following things (often called resources) play a crucial role:
objects which are the true entities in the game
rooms the places (levels) in which the objects live
sprites: (animated) images that are used to represent the objects
sounds: these an be used in games, either as background music or as effects
backgrounds: the images used as background for the rooms

There is actually one other type of resource: scripts. Scripts are small pieces of code that
can be used to extent the possibilities of Game Maker. They will be treated in the
advance chapters later in this book.

Chapter 5 Let us look at an example

It is good to first have alook at how to make a very smple example. The first step isto
describe the game we want to make. (Y ou should always do this first; it will save you a
lot of work later.) The game will be very smple: Thereis a ball that is bouncing around
between some walls. The player should try to click on the ball with the mouse. Each time
he succeeds he gets a point.

As can be seen we will require two different objects: the ball and the wall. We will also
need two different sprites: one for the wall object and one for the ball object. Finally, we
want to hear some sound when we succeed in clicking on the ball with the mouse. We
will just use one room in which the game takes place. (If youdon't want to make the
game yourself you can load it from the Exanpl es folder under the namet ouch t he
bal | . gnd.)

Let usfirst make the sprites. From the Add menu select Add Sprite (you can also use the
appropriate button on the toolbar). A form will open. In the Name field type “wall”.
Select the L oad Sprite button and choose an appropriate image (you can find one in the
maze folder). That is al and you can close the form. In the same way, create a ball sprite.

Next we make the sound. From the Add menu select Add Sound. A different form
opens. Give the sound a name and choose L oad Sound. Pick something appropriate and
check whether it is indeed a nice sound by pressing the play button. If you are satisfied,
close the form.

The next step is to create the two objects. Let us first make the wall object. Again from
the Add menu choose Add Object. A form will open that 1ooks quite a bit more complex
than the ones we saw so far. At the left there is some global information about the object.
Give the object an appropriate name and from the drop down menu pick the correct wall
sprite. Because awall is solid you should check the box labeled Solid. That is al for the
moment. Again create a new object, name it ball, and give it the ball sprite. We don’t
make the ball solid. For the ball we need to define some behavior. In the middle you see
an empty list of events. Below it there is a button labeled Add Event. Pressit and you
will see all possible events. Select the creation event. Thisis now added to the list of
events. At the far right you see all the possible actions, in a number of groups. From the
move group choose the action with the 8 red arrows and drag it to the action list in the
middle. This action will make the object move in a particular direction. Once you drop it
in the action list adialog pops up in which you can indicate the direction of motion.
Select al the 8 arrows to choose a random direction. Y ou can leave the speed as 8. Now
close the dialog. So now the ball will start moving at the moment it is created. Secondly
we have to define what should happen in the case of a collision event with the wall.
Again press Add Event. Click on the button for collision events and in the drop down
menu select the wall object. For this event we need the bounce action. (Y ou can see what
each action does by holding the mouse still above it.) Finaly we need to define what to
do when the user presses the left mouse button on the ball. Add the corresponding event
and select the left mouse button from the pop-up menu. For this event we need afew

10

actions: one to play a sound (can be found in the group of Misc. actions) and oneto
change the score (in the same group) and two more to move the ball to a new random
position and moving in a new direction (in the same way as in the creation event). For the
sound action, select the correct sound. For the score action, type in avalue of 1 and check
the Relative box. This means that 1 is added to the current score. (If you make a mistake
you can double click the action to change its settings.)

Our objects are now ready. What remains is to define the room. Add a new room to the
game, again from the Add menu. At the right you see the empty room. At the left you
find some properties that you can change, like the width and height of the room. At the
bottom left you can select an object in the pop-up menu. By clicking in the room you can
place instances of that object there. Y ou can remove instances using the right mouse
button. Create a nice boundary around the room using the wall object. Finally place 1 or 2
ball objects in the room. Ready.

Now it istime to test our game. Press the Run button and see what happens. If you made
no mistakes the ball starts moving around. Try clicking on it with the mouse and see what
happens. Y ou can stop the game by pressing the <Esc> key. Y ou can now make further
changes.

Congratulations. Y ou made your first little game. But | think it is now time to learn a bit
more about Game Maker .

11

Chapter 6 The global user interface
When you start Game Maker the following form is shown:

= Game Maker: <new game: O] x|
File Edit &dd Run ‘Window Help

DEHE P GEOC B OE

?E @

----- 1 Sounds

----- £1 Backgrounds
----- 1 Paths

----- £1 Scripts

----- 1 Objects

----- 1 Rooms

----- ? Game Information
822 Game Options

At the left you see the different resources, mention above: Sprites, Sounds, Backgrounds,
Paths, Scripts, Objects, Rooms and two more: Game Information and Game Options. At
the top there is the well-known menu and toolbar. In this chapter | will describe briefly
the various menu items, buttons, etc. In the later chapters we discuss a number of them in
detail. Note that many things can be achieved in different ways: by choosing a command
from the menu, by clicking a button, or by right clicking on a resource.

6.1 File menu

In the file menu you can find some of the usual commands to load and save files, plus a
few special ones:

- New. Choose this command to start creating a new game. If the current game was
changed you are asked whether you want to save it. There is also atoolbar button
for this.

Open. Opens a game file. Game Maker files have the extension .gmd. Thereisa
toolbar button for this command. Y ou can aso open a game by dragging the file
to the Game Maker window.

Save. Saves the game design file under its current name. If no name was specified
before, you are asked for a new name. Y ou can only use this command when the
file was changed. Again, there is atoolbar button for this.

Save As. Saves the game design file under a differert name. You are asked for a
new name.

12

Createstand-alone. Use this to create a stand-aone version of your game that
you can distribute to other people. You will get more information about
distributing games in Chapter 24.

Import scripts. Can be used to import useful scripts from files. This will be
discussed in more detail in Chapter 19.

Export scripts. Can be used to save your scriptsin afile, to be used by others.
Again see Chapter 19.

Merge Game. With this command you can merge all the resources (sprites,
sounds, objects, rooms, etc.) from another game into the current game. Thisis
very useful if you want to make parts you want to reuse (e.g. menu systems).
(Note that al resources and instances and tiles will get a new id which might
cause problems if you use these in scripts.)

Pr efer ences. Here you can set a number of preferences about Game Maker. They
will be remembered between different calls of Game Maker. The following
preferences can be set:

0 Show recently edited gamesin the file menu. If checked the four most
recently edited games are shown in the file menu.

0 Usecompression when saving games. If checked images in game files
are compressed. This considerably reduces the game file size but will
dightly increase loading and saving times.

0 Keep backup copies of files. If checked the program saves a backup copy
of your game with the extension .bak. Change this back to .gmd and you
can use it again.

0 Hidethedesigner and wait while the gameisrunning. If checked,
when you run the game, the designer window will disappear and come
back when the game is finished.

0 Run gamesin secure mode. If checked, any game created with Game
Maker that runs on your machine will not be allowed to execute external
programs or change or delete files a a place different from the game
location. (Thisis a safeguard against Trojan horses.) Checking this might
make that certain games don't work correctly.

0 In object properties, show hintsfor actions. If checked, in the object
properties form, when you hold your mouse over one of the actions, a
description is shown.

o Inroom form, remove instances outside the room. If checked, the
program warns you when there are instances or tiles outside aroom and
lets you remove them.

0 Scriptsand code. See Chapter 19 for more information about these
preferences.

0 Image editor. Default Game Maker uses a built-in editor for images. If

you have a better other image editing program you can indicate here to use

adifferent program for editing the images.
Recent Files. Unless disabled in the preferences, the last four games you worked
on are given here, such that you can open them with a simple mouse click.

Exit. Probably obvious. Press thisto exit Game Maker. If you changed the current

game you will be asked whether you want to saveit.

13

6.2 Edit menu

The edit menu contains a number of commands that relate to the currently selected
resource (object, sprite, sound, etc.) or group of resources. Depending on the type of
resource some of the commands might not be available.
Insert resource. Insert anew instance of the currently selected type of resource
before the current one. (If you selected a group of resources the resource is added
in the group.) A form will open in which you can change the properties of the
resource. Thiswill be treated in detail in the following chapters.
Duplicate. Makes a copy of the current resource and adds it. A form is opened in
which you can change the resource.
Insert group. Resources can be grouped together. Thisis very useful when you
make large games. For example, you can put al sounds related to a certain object
in agroup, or you can group all objects that are used in a particular level. This
command creates a new group in the currently selected resource type. You will be
asked for a name. Groups can again contain groups, etc. As indicated below you
can drag resources into the groups.
Delete. Deletes the currently selected resource (or group of resources). Be careful.
This cannot be undone. Y ou will though be warned.
Rename. Give the resource a new name. This can also be done in the property
form for the resource. Also you can select the resource and then click on the
name.
Properties. Use this command to bring up the form to edit the properties. Note
that al the property forms appear within the main form. Y ou can edit many of
them at the same time. Y ou can also edit the properties by double clicking on the
resource.
Show Object Information. Using this command you can get an overview of all
objects in the game.
Note that al these commands can also be given in adifferent way. Right-click on a
resource or resource group, and the appropriate pop-up menu will appear.

6.3 Add menu

In this menu you can add a new resources of each of the different types. Note that for
each of them there is also a button on the toolbar and a keyboard shortcut.

6.4 Window menu
In this menu you find some of the usua commands to manage the different property
windows in the main form:

- Cascade. Cascade all the windows such that each of them is partially visible.
Arrangelcons. Arrange al the iconified property windows. (Useful in particular
when resizing the main form.

Close All. Close dl the property windows, asking the user whether or not to save
the changes made.

6.5 Help menu
Here you find some commands to help you:

14

Contents. Here you can access the on-line version of this document.

How to use help. In case you do not know, some help on using help.

Web site. Connect you to the Game Maker website where you can find
information about the most recent version of Game Maker and collections of
games and resources for Game Maker. | recommend that you check out the site at
least once a month for new information.

About Game M aker. Give some short information about this version of Game
Maker.

6.6 Theresource explorer

At the left of the main form you find the resource explorer. Here you will see atree-like
view of al resources in your game. It works in the same way as the windows explorer
and you are most likely familiar with it. If an item has a + sign in front of it you can click
on the sign to see the resources inside it. By clicking on the — sign these disappear again.
Y ou can change a name of aresource (except the top level ones) by selecting it (with a
single click) and then clicking on the name. Double click on resource to edit its
properties. Use the right mouse button to access the same commands as in the Edit menu.
Y ou can change the order of the resources by clicking on them with the mouse and
holding the mouse button pressed. Now you can drag the resource (or group) to the
appropriate place. (Of course the place must be correct. You e.g. cannot drag a sound into
the list of sprites.)

15

Chapter 7 Defining sprites

Sprites are the visual represertations of all the objects in the game. A spriteis either a

single image, drawn with any drawing program you like, or a set of images that, when

played one of the other, look like an animated motion. For example, the following four
images form a sprite for a Pacman moving to the right.

image image 1 image & image 3
When you make a game you start by collecting a set of nice sprites for the objects in your
game. A collection of sprites, both static an animated, is provided with Game Maker.

Other sprites can be found on the web, normally in the form of animated gif files.

To add a sprite, choose the item Add Sprite from the Add menu, or use the
corresponding button on the toolbar. The following form will pop up.

47 Sprite Properties =10 x|

M arne: Isprite[l -

Standard | Advanced

(= Load Sprite

Width: 32 Height: 32

Mumber of subimages: 4
Shaw: iIT +|

v Tranzparent

Edit Sprite |

W OK |

At the top you can indicate the name of the sprite. All sprites (and al other resources)
have aname. Y ou best give each sprite a descriptive name. Make sure all resources get
different names. Even though thisis not strictly required, you are strongly advised to only
use letters and digits and the underscore symbol (_) inaname of a sprite (and any other
resource) and to let is start with aletter. In particular don’t use the space character. This
will become important once you start using code.

16

There are two tabs, labeled Standar d and Advanced. For the moment we will only talk
about the standard options. The advanced ones can be found in Chapter 14.

To load a sprite, click on the button Load Sprite. A standard file dialog opensin which
you can indicate the sprite. Game Maker can load many different graphics files. When
you load an animated gif, the different subimages form the sprite images. (Note that
compressed animated gifs cannot be loaded.) Once the sprite is loaded the first subimage
is shown on the right. When there are multiple subimages, you can cycle through them
using the arrow buttons.

The checkbox labeled Transparent indicates whether the background should be
considered as being transparent. Most sprites are transparent. The background is
determined by the color of the leftmost bottommost pixel of the image. So make sure that
no pixel of the actual image has this color. (Note that gif files often define their own
transparency color. This color is not used in Game Maker.)

With the button Edit Sprite you can edit the sprite, or even create a completely new
sprite. For more information on creating and changing sprites, see Chapter 14.

17

Chapter 8 Sounds and music

Most games have certain sound effects and some background music. Some useful sound
effects are provided with Game Maker. Many more can be found on the web.

To add a sound resource to your game, use the item Add Sound in the Add menu or use
the corresponding button on the toolbar. The following form will pop up.

4} Sound Prop =100 .x]

Marne: Is-:uunu:l[l

Standard I Advanced I

Find: % ave

Time: 74 mzec.

|-

" 0K

As before, at the top you can change the name of the sound resource. Again you have two
tabs, Standard and Advanced. We only discuss the standard option here. For more
information on the advance tab, see Chapter 15.

To load a sound, press the button labeled L oad Sound. A file selector dialog pops up in
which you can select the sound file. There are two types of sound files, wave files and
midi files. (For information on mp3 files see Chapter 15.) Wave files are used for short
sound effects. They use alot of memory but play instantaneoudly. Use these for al the
sound effects in your game. Midi files describe music in a different way. As a result they
use alot less memory, but they are limited to instrumental background music. Also, only
one midi sound can play at any time.

Once you load a music file its kind and length are shown. Y ou can listen to the sound
using the play button.

18

Chapter 9 Backgrounds

The third type of basic resources is backgrounds. Backgrounds are usualy large images
that are used as backgrounds (or foregrounds) for the rooms in which the game takes
place. Often background images are made in such away that they can tile an area without
visual cracks. In thisway you can fill the background with some pattern. A number of
such tiling backgrounds are provided with Game Maker. Many more can be found on the
web.

To add a background resource to your game, use the item Add Background in the Add
menu or use the corresponding button on the toolbar. The following form will pop up.

=10l x|

Mame: Ibackgraundﬂ
Standard | Advanced

Width: 80 Height: 80

[T Tranzparent

Edit Backaraund |

v oK |

Again you can provide a name, and again there are Standar d and Advanced tabs. For
more information on the advanced options, see Chapter 16. Press the button L oad
Background to load a background image. Game Maker supports many image formats.
Background images cannot be animated! The checkbox Transparent indicates whether
or not the background is partially transparent. Most backgrounds are not transparent so
the default is not. As transparency color the color of the leftmost bottommost pixel is
used.

Y ou can change the background or create a new one using the button Edit Background.
For more information, see Chapter 16.

19

Chapter 10 Defining objects

We might have added some nice images and sounds to the game, but they don’'t do
anything. We now come to the most important resource of Game Maker : the objects.
Objects are entities in the game that do things. They most of the time have a sprite as a
graphical representation such that you see them. They have behavior because they can
react to certain events. All things you see in the game (except for the background) are
objects. (Or to be more precise, they are instances of objects.) The characters, the
monsters, the balls, the walls, etc. are all objects. There might also be certain objects that
you don’t see but that control certain aspects of the game play.

Please realize the difference between sprites and objects. Sprites are just (animated)
images that don’t have any behavior. Objects normally have a sprite to represent them but
object have behavior. Without objects there is no game!

Also realize the difference between objects and instances. An object described a certain
entity, e.g. a monster. There can be multiple instances of this object in the game. When
we talk about an instance we mean one particular instance of the object. When we talk
about an object we mean all the instances of this object.

To add an object to your game, choose Add Object from the Add menu. The following
form will appear:

* Object Properties s =10f x|
Mame: IDbiECtD Ewvents: Actionz:

[e] R

Standard | Advanced I

Sprite;

|< no zpriker iﬂl

[~ Salid
v Misible

[5]

=] (2]
I =/ aluky] I AL I UaEanisy I DEA] I Sma[qol SAO

Shaow Information

(= (U]] [[] [£] B

Add Event

Delete Change

Thisisrather complex. At the left there is some general information about the object. In
the middle there is the list of events that can happen to the object. See the next chapter for
details. At the right there are the different actions the object can perform. These will be
treated in Chapter 12.

20

As aways, you can (and should) give your object a name. Next you can indicate the
sprite for the object. To this end, click with the left mouse button on the sprite box or the
menu button next to it. A menu will pop- up with all the available sprites. Select the one
you want to use for the object. Below this there are two check boxes. The box labeled
Solid indicates whether thisis a solid object (like awall). Collisions with solid objects
are treated differently from collisions with non-solid objects. See the next chapter for
more information. Visible indicates whether instances of this object are visible. Clearly,
most objects are visible, but sometimes it is useful to have invisible objects. For example,
you can use them for waypoints for a moving monster. Invisible objects will react to
events and other instances do collide with them.

The button Show I nfor mation gives an overview of all information for the object that
can also be printed. This isin particular useful when you loose overview of al your
actions and events,

21

Chapter 11 Events

Game Maker uses what is called an event driven approach. That is, in al sorts of cases
the instances of the objects get events (kind of messages that something has happened).
They can then react to these messages by executing certain actions. For each object you
must indicate to which events it responds and what actions it must perform. This may
sound complicated but is actually very easy. First of al, for most events the object does
not have to do anything. For the events where something must happen you can use a very
simple drag-and-drop approach to indicate the actions.

In the middle of the object property form there isalist of events to which the object must
react. Initialy it isempty. You can add events to it by pressing the button labeled Add
Event. A form will appear will al different types of events. Here you select the event you
want to add. Sometimes a menu pops up with extra choices. For example, for the
keyboard event you must select the key. Below | will give a complete list plus
descriptions. One event in the list will be selected. Thisis the event we are currently
changing. Y ou can change the selected event by clicking on it. At the right there are all
the actions represented by little icons. They are grouped in a number of tabbed pages. In
the next chapter | will describe all the actions and what they do. Between the events and
the actions there is the action list. This list contains the actions for the current event. To
add actions to the list, drag them with your mouse from the right to the list. They will be
placed below each other, with a short description. For each action you will be asked to
provide a few parameters. These will also be described in the next chapter. So after
adding a few actions the situation will look as follows:

Eventz: Actions: Q‘!;_ %

W Create % Start moving in a direction | I
HELLY

@ <Lefts i Set the gravity

& <Right>

Set the friction | g
Play a sound

Add Ewvent

I apoo | A I uu:usan@' oz SRElo | ano

| (D TR =) | &

Dielete Change

Now you can start adding actions to another event. Click on the correct event with the | eft
mouse button to select it and drag action in the list. (Note that you cannot delete events.
An event with no actions added to it will automatically be removed next once you close
the form. So to remove an event, remove all its actions.)

22

Y ou can change the order of the actions in the list again using drag-and-drop. If you hold
the <Citrl> key while dragging you make a copy of the action. Y ou can even use drag
and-drop between action lists for different objects. When you click with the right mouse
button on an action, a menu appears in which you can delete the action (can aso be done
by using the key) or copy and paste actions. When you hold your mouse still
above an action, alonger description is given of the action. See the next chapter for more
information on actions.

To delete the currently selected event together withall its actions press the button |abeled
Delete. (Events without any actions will automatically be deleted when you close the
form so there is no need to do this.) If you want to assign the actions to a different event
(for example, because you decided to use a different key for them) press the button
labeled Change and pick the new event you want. (The event should not be defined
already!)

There exists arather large collection of different events. Asyou will notice some of the
event names have a menu symbol next to it. This means that there is a collection of
events here. When you click with the mouse button on the menu, or right-click on the
event name, a menu appears from which you can pick the event you want to change. Here
is a description of the various events. (Again remember that you normally use only afew
of them.)

%Y Createevent
This event happens when an instance of the object is created. It is normally used to set the
instance in motion and/or to set certain variables for the instance.

T Destroy event

This event happens when the instance is destroyed. To be preciseg, it happens just before it
is destroyed, so the instance does still exist when the event is executed! Most of the time
this event is not used but you can e.g. use it to change the score or to create some other
object.

& Alarm events

Each instance has 8 alarm clocks. Y ou can set these alarm clocks using certain actions
(see next chapter). The alarm clock then ticks down until it reaches O at which moment
the alarm event is generated. To indicate the actions for a given aarm clock, you first
need to select it in the menu. Alarm clocks are very useful. You can use them to let
certain things happen from time to time. For example a monster can change its direction
of motion every 20 steps. (In such cases one of the actions in the event must set the dlarm
clock again.)

o= Step events

The step event happens every step of the game. Here you can put actions that need to be
executed continuously. For example, if one object should follow another, here you can
adapt the direction of motion towards the object we are following. Be careful with this

23

event though. Don't put many complicated actions in the step event of objects of which
there are many instances. This might slow the game down. To be more precise, there are
three different step events. Normally you only need the default one. But using the menu
you can also select the begin and the end step event. The begin step event is executed at
the beginning of each step, before any other events take place. The normal step event is
executed just before the instances are put in their new positions. The end step event is
executed at the end of the step, just before the drawing. Thisistypically used for e.g.
changing the sprite depending on the current direction.

¢ Collision events

Whenever two instances collide (that is, their sprites overlap) a collision event appears.
WEéll, to be precise two collision event occur; one for each instance. The instance can
react to this collision event. To this end, from the menu select the object with which you
want to define the collision event. Next you place the actions here.

There is a difference in what happens when the instance collides with a solid object or a
non-solid object. First of all, when there are o actions in the collision event, nothing
happens. The current instance simply keeps on moving; even when the other object is
solid. When the collision event contains actions the following happens:

When the other object is solid, the instance is placed back at its previous place (before the
collision occurs). Then the event is executed. Finally, the instance is moved to its new
position. So if the event e.g. reverses the direction of motion, the instance bounces
against the wall without stopping. If there is still a collision, the instance is kept at its
previous place. So it effectively stops moving.

When the other object is not solid, the instance is not put back. The event is smply
executed with the instance at its current position. Also, there is no second check for a
collision. If you think about it, thisis the logical thing that should happen. Because the
object is not solid, we can simply move over it. The event notifies us that thisis

happening.

There are many uses for the collision event. Instances can use it to bounce against walls.
You can use it to destroy object when they are e.g. hit by a bullet, etc.

& Keyboard events

When the player presses a key, a keyboard event happens for al instances of al objects.
There is adifferent event for each key. In the menu you can pick the key for which you
want to define the keyboard event and next drag actions there. Clearly, only afew objects
need events for only afew keys. You get an event in every step as long as the player
keeps down the key. There are two special keyboard events. Oneis called <No key>.
This event happens in each step when no key is pressed. The second one is called <Any
key> and happens whenever some key is pressed. By the way, when the player presses
multiple keys, the events for all the keys pressed happen. Note that the keys on the
numeric keypad only produce the corresponding events when <NumLock> is pressed.

24

& Mouseevents

A mouse event happens for an instance whenever the mouse cursor lies inside the sprite
representing the instance. Depending on which mouse buttons are pressed you get the no
button, left button, right button, or middle button event. The mouse button event are
generated in each step as long as the player keeps the mouse button pressed. The press
events are only generated once when the button is pressed. The release events are only
generated when the button is released. Note that these events only occur when the mouse
is above the instance. If the player presses a mouse button on a place where there is no
instance, no event is generated. Still it is sometimes important to react to any mouse
click. This can be achieved by creating a sprite with the size of the room. Now create an
object with this sprite that covers the whole room. Y ou can make the object invisible.
Place it in each room, and it will get events whenever the player presses his mouse.

@ Other events
There are a number of other events that can be useful in certain games. They are found in
this menu. The following events can be found here:
- Outgde: This event happens when the instance lies completely outside the room.
Thisistypically a good moment to destroy it.
Boundary: This event happens when the instance intersects the boundary of the
room.
Game start: This event happens for al instances in the first room when the game
starts. It happens before the room start event (see below) and even before the
creation events for the instances in the room. This event is typically defined in
only one "controller" object and is used to start some background music and to
initialize some variables, or |load some data.
Game end: The event happens to all instances when the game ends. Again
typically just one object defines this event. It is for example used to store certain
datain afile.
Room start: This event happens for al instances initially in aroom when the
room starts. It happens before the creation events.
Room end: This event happens to all existing instances when the room ends.
No mor e lives: Game Maker has a built-in lives system. There is an action to set
and change the number of lives. Whenever the number of lives becomes less than
or equal to 0, this event happens. It is typically used to end or restart the game.
End of animation: Asindicated above, an animation consists of a number of
images that are shown one after the other. After the last one is shown we start
again with the first one. The event happens at precisely that moment. This can be
used to e.g. change the animation, or destroy the instance.
End of path: This event happens when the instance follows a path and the end of
the path is reached. See Chapter 19 for more information on paths.
User defined: There are eight of these events. They normally never happen unless
you yoursdlf cal them from a piece of code.

& Drawing event

25

Instances, when visible, draw their sprite in each step on the screen. When you specify
actions in the drawing event, the sprite is not drawn, but these actions are executed
instead. This can be used to draw something else than the sprite, or first make some
changes to sprite parameters. There are a number of drawing actions that are especially
meant for use in the drawing event. Note that the drawing event is only executed when
the object is visible. Also note thet, independent of what you draw here, collision events
are based on the sprite that is associated with the instance.

B2K ey pressevents

This event is similar to the keyboard event but it happens only once when the key is
pressed, rather than continuoudly. Thisis useful when you want an action to happen only
once.

Key release events
This event is similar to the keyboard event but it happens only once when the key is
released, rather than continuously.

In some situation it is important to understand the order in which Game Maker processes
the events. Thisis as follows:

Begin step events

Alarm events

Keyboard, Key press, and Key release events
Mouse events

Normal step events

(now all instances are set to their new positions)
Collision events

End step events

Drawing events

The creation, destroy, and other event are performed when the corresponding things
happen.

26

Chapter 12 Actions

Actions are the things that happen in Game Maker. Actions are placed in events.
Whenever the event takes place these actions are performed. There are alarge number of
different actions available and it is important that you understand what they do. In this
chapter | will describe al of them.

All the actions are found in the tabbed pages at the right of the object property form.
There are six sets of actions. Y ou get the set you want by clicking on the correct tab.
When you hold you mouse above one of the actions, a short description is shown to

remind you of its function.

Let me briefly repeat: To put an action in an event, just drag it from the tabbed pages to
the action list. Y ou can change the order in the list, again using dragging. Holding the
<Ctrl> key while dragging makes a copy of the action. (Y ou can drag and copy actions
between the lists in different object property forms.) Use the right mouse button to
remove actions (or use the key) and to copy and paste actions.

When you drop an action, awindow will pop-up most of the time, in which you can fill in
certain parameters for the action. Two types of parameters appear in many actions. At the
top you can indicate to which instance the action applies. The default is self, which is the
instance for which the action is performed. Most of the time this is what you want. In the
case of acollision event, you can also specify to apply the action to the other instance
involved in the collision. In this way you can e.g. destroy the other instance. Finally, you
can choose to apply the action to al instances of a particular object. In thisway you can
e.g. change all red balls into blue balls. The second type of parameter is the box labeled
Relative. By checking this box, the values you type in are relative to the current values.
For example, in this way you can add something to the current score, rather than
changing the current score to the new value. The other parameters will be described
below. You can later change the parameters by double clicking on the action.

12.1 Movement actions

Thefirst set of actions consists of those related to movement of objects. The following
actions exist:

Start moving in a direction

Use this action to start the instance moving in a particular direction. Y ou can indicate the
direction using the arrow keys. Use the middle button to stop the motion. Also you need
to specify the speed of the motion. This speed is given in pixels per step. The default
value is 8. Preferably don’t use negative speeds. Y ou can specify multiple directions. In
this case a random choice is made. In this way you can e.g. let amonster start moving
either left or right.

Set direction and speed of motion

27

This is the second way to specify a motion with the blue arrows). Here you can indicate a
precise direction. Thisis an angle between 0 and 360 degrees. 0 mean to the right. The
direction is counter-clockwise. So for example 90 indicates an upward direction. If you
want an arbitrary direction, you can type r andom(360) . Asyou will see below the
function r andomgives arandom number smaller than the indicated value. As you might
have noticed there is a checkbox labeled Relative. If you check this, the new motion is
added to the previous one. For example, if the instance is moving upwards and you add a
bit of motion to the left, the new motion will be upwards to the left.

" Set the horizontal speed

The speed of an instance consists of a horizontal part and a vertical part. With this action
you can change the horizontal speed. A positive horizontal speed means a motion to the
right. A negative one a motion to the left. The vertical speed will remain the same. Use
relative to increase the horizontal speed (or decrease it by providing a negative number).

= | Set the vertical speed
n

In asimilar way, with this action you can change the vertical speed of the instance.

Z | Movetowardsa point

This action gives another way to specify a motion. Y ou indicate a position and a speed
and the instance starts moving with the speed towards the position. (It won't stop at the
position!) For example, if you want a bullet to fly towards the position of the spaceship
you can use as position spaceshi p. x, spaceshi p. y. (You will learn more about the
use of variables like these below.) If you check the Relative box, you specify the position
relative to the current position of the instance. (The speed is not taken relative!)

+
¥ | Set the gravity

With this action you can create gravity for this particular object. Y ou specify a direction
(angle between 0 and 360 degrees) and a speed, and in each step this amount of speed in
the given direction is added to the current motion of the object instance. Normally you
need a very small speed increment (like 0.01). Typically you want a downward direction
(270 degrees). If you check the Relative box you increase the gravity speed and
direction. Note that, contrary to real life, different object can have different gravity
directions.

e

Set thefriction

Friction slows down the instances when they move. Y ou specify the about of friction. In
each step this amount is subtracted from the speed until the speed becomes 0. Normally
you want avery small number here (like 0.01).

£k Jump to a given position
Using this action you can place the instance in a particular position. You simply specify
the x- and y-coordinate, and the instance is placed with its reference point on that

28

position. If you check the Relative box, the position is relative to the current position of
the instance.

)

{5 Jump to the start position
This action places the instance back at the position where it was created.

ﬂ? Jump to a random position

This action move the instance to a random position in the room, Only position are chosen
where the instance does not intersect any solid instance. Y ou can specify the snapping
used. If you specify positive values, the coordinates chosen with be integer multiples of
the indicated values. This can be used to e.g. keep the instance aligned with the cellsin
your game (if any). Y ou can specify a separate horizontal snapping and vertical snapping.

=| Reverse horizontal direction
With this action you reverse the horizontal motion of the instance. This can for example
be used when the object collides with a vertical wall.

f Reverse vertical direction
With this action you reverse the vertical motion of the instance. This can for example be
used when the object collides with a horizontal wall.

IEI Bounce against objects

When you put this action in the collision event with some object, the instance bounces
back from this object in a natural way. If you set the parameter precise to false, only
horizontal and vertical walls are treated correctly. When you set precise to true also
danted (and even curved) walls are treated satisfactory. Thisis though slower. Also you
can indicate whether to bounce only from solid objects or from all objects. Please realize
that the bounce is not completely correct because this depends on many properties. But in
many situations the effect is good enough.

T Snap to grid

With this action you can round the position of the instance to a grid. Y ou can indicate
both the horizontal and vertical snapping value (that is, the sized of the cells of the grid).
This can be very useful to make sure that instances stay on a grid.

5 Set a path for theinstance

With this action you can indicate that the instance should follow a particular path. Y ou
indicate the path, the speed and the position in the path where to start (O=beginning,
1=end). See Chapter 19 for more information on paths.

12.2 Object related actions

The following set of actions deals with creating, changing, and destroying instances of
objects.

29

¥ | Create an instance of an obj ect

With this action you can create an instance of an object. Y ou specify which object to
create and the position for the new instance. If you check the Relative box, the position is
relative to the position of the current instance. Creating instances during the game is
extremely useful. A space ship can create bullets; a bomb can create an explosion, etc. In
many games you will have some controller object that from time to time creates monsters
or other objects. For the newly created instance the creation event is executed.

E Changetheinstance

With this action you can change the current instance into another object. So for example,
you can change an instance of a bomb into an explosion. All settings, like the motion or
the value of variables, will stay the same. Y ou can indicate whether or not to perform the
destroy event for the current object and the creation event for the new object.

l Destroy theinstance

With this action you destroy the current instance. The destroy event for the instance is
executed.

' Destroy instances at a position

With this action you destroy all instances whose bounding box contains a given position.
Thisis for example useful when you use an exploding bomb. When you check the
Relative box the position is taken relative to the position of the current instance.

& Changethe sprite

Use this action to change the sprite for the instance. Y ou indicate the new sprite. Y ou can
also indicate a scaling factor. A factor of 1 means that the sprite is not scaled. The scaling
factor must be larger than 0. Please realize that scaling the sprite will slow down the
drawing. Changing sprites is an important feature. For example, often you want to change
the sprite of a character depending on the direction in which it walks. This can be
achieved by making different sprites for each of the (four) directions. Within the
keyboard events for the arrow keys you set the direction of motion and the sprite.

12.3 Miscellaneous actions

Hereisalarge collection of actions that deal with al sorts of aspects, like sound, rooms,
score, etc.

5 Play a sound

With this action you play one of the sound resources you added to your game. Y ou can
indicate the sound you want to play and whether it should play once (the default) or loop
continuously. Multiple wave sounds can play at once but only one midi sound can play.
So if you start amidi sound, the current midi sound is stopped. Unless indicated in the

30

advanced tab (see Chapter 15) only one instance of each sound can play. So if the same
sound is already playing it is stopped and restarted.

X Stop a sound
This action stops the indicated sound. If multiple instances of this sound are playing all
are stopped.

& Set an alarm clock

With this action you can set one of the eight alarm clocks for the instance. Y ou indicate
the number of steps and the alarm clock. After the indicated number of steps, the instance
will receive the corresponding alarm event. Y ou can also increase or decrease the value
by checking the Relative box. If you set the alarm clock to a value less than or equal to O
you switch it off, so the event is not generated.

Display a message

With this action you can display a message in a dialog box. You ssimply typein the
message. If you use a# symbol in the message text it will be interpreted as a new line
character. If the message text starts with a quote or double quote symboal, it is interpreted
as an expression. See below for more information about expressions. (Note that this
action does not work when your game must run in exclusive mode, see Chapter 22.)

Set the score

Game Maker has a built-in score mechanism. The score is normally displayed in the
window caption. Y ou can use this action to change the score. Y ou simply provide the
new value for the score. Often you want to add something to the score. In this case don't
forget the check the Relative box.

? Display the highscore list

This action displays the highscore list. For each game the top ten scores are maintained.
These are shown in the list. If the current score is among the top ten, the new score is
inserted and the player can type his or her name. There are many ways in which you can
change the visua appearance of the highscore list. See Chapter 22 for detail. (Thisaction
does not work in exclusive mode!)

E Set the number of lives

Game Maker aso has abuilt-in lives system. The number of livesis normally displayed
in the caption but you can switch this off. With this action you can change the number of
lives left. Normally you set it to some value like 3 at the beginning of the game and then
decrease or increase the number depending on what happens. Don't forget to check the
Relative box if you want to add or subtract from the number of lives. At the moment the
number of lives becomes 0 (or smaller than 0) a“"no more lives' event is generated.

7z

Sleep for awhile

31

With this action you can freeze the scene for a particular time. Thisis typically used at
the beginning or end of alevel or when you give the player some message. Y ou specify
the number of milliseconds to sleep. Also you can indicate whether the screen should first
be redrawn to reflect the most recent situation.

=1

Gotothepreviousroom

Move to the previous room. Y ou can indicate the type of transition effect between the
rooms. Experiment to see what works nice for you. If you are in the first room you get an
error.

LI

Gotothe next room
Move to the next room. Y ou can indicate the transition.

i Restart the current room
The current room is restarted. Y ou indicate the transition effect.

e Go to a different room
With this action can go to a particular room. Y ou indicate the room and the transition
effect.

73
;I Restart the game
With this action you restart the game from the beginning.

D End the game
Withthis action you end the game.

H Savethe game

With this action you can save the current game status. Y ou specify the filename for
saving (the fileis created in the working directory for the game). Later the game can be
loaded with the next action.

|| oad the game

Load the game status from afile. Y ou specify the file name. Make sure the saved game is
for the same game and created with the same version of Game Maker. Otherwise an error
will occur. (To be precise, the game is loaded at the end of the current step. So some
actions after this one are still executed in the current game, not the loaded one!)

i Show the game infor mation

With this action you pop up the game information window. See Chapter 21 for more
information on how to create the game information.

=] Switch fullscreen mode

32

With this action you can change the screen mode from windowed to fullscreen and back.
Y ou can indicate whether to toggle the mode or whether to go to windowed or fullscreen
mode. (This does not work in exclusive mode.)

12.4 Questions

There are a number of actions that ask a question, for example whether a position is
empty. When the answer is yes (true) the next action is executed, otherwise it is skipped.
If you want multiple actions to be executed or skipped based on the outcome you can put
them in a block by putting start block and end block actions around them. There can aso
be an else part which is executed when the answer is no. So a question typically looks as
follows:

|@ If & pogition iz collision free

& Start block,

Start moving in a direction
%% Endblock

@ Elze

& Start block,

)(} Jump to a given position

%% Erdblock

Here the question is asked whether a position for the current instance is collision free. If
so, the instance starts moving in a given direction. If not, the instance jumps to a given
position.

For all questions thereisafield labeled NOT. If you check this field, the result of the
question isreversed. That is, if the result was true it becomes false and if it was false, it
becomes true. This allows you to perform certain actions when a question is not true.

For many questions you can indicate that they should apply to al instances of a particular
object. In this case the result is true only if it istrue for all instances of the object. For
example, you can check whether for al balls the position dightly to the right is collision
free.

The following questions and related actions are available. (Note that they all have a

differently shaped icon such that they can more easily be distinguished from other
actions.)

33

() If a position iscollision free

This questions returns true if the current instance, placed at the indicated position does
not generate a collision with an object. Y ou can specify the position either absolute or
relative. You can aso indicate whether only solid objects should be taken into account or
all objects should be taken into account. This action is typically used to check whether
the instance can move to a particular position.

@ If thereisa collision at a position

Thisisthe reverse of the previous action. It returnstrue if there is a collision when the
current instance is placed at the given position (again, either only with solid objects or
with al objects).

If thereisan object at a position
This question returns true if the instance placed at the indicate position meets an instance
of the indicated object.

If the number of instancesis avalue

Y ou specify an object and a number. If the current number of instances of the object is
equal to the number the question returns true. Otherwise it returns false. You can also
indicate that the check should be whether the number of instances is smaller than the
given vaue or larger than the given value. Thisistypically used to check whether all
instances of a particular type are gone. Thisis often the moment to end alevel or a game.

@ If adicelandson one

Y ou specify the number of sides of the dice. Then if the dice lands on one, the result is
true and the next action is performed. This can be used to put an element of randomness
in your game. For example, in each step you can generate with a particular chance a
bomb or change direction. The larger the number of sides of the diceis, the smaller the
chance. You can actually use real numbers. For example if you set the number of sidesto
1.5 the next action is performed two out of three times. Using a number smaller than 1
makes no sense.

@ If asound isplaying
The result of this question is true if the indicated sound is playing.

If the user answersyesto a question

Y ou specify aquestion. A dialog is shown to the player with a yes and a no button. The
result istrue is the player answers yes. This action cannot be used in exclusive mode; the
answer will then always be yes.

(2) 1t an expression istrue

Y ou can enter an expression. If the expression evaluates to true (that is, a number larger
or equal to 0.5) the next action is performed. See below for more information on
EXpPressions.

@ If a mouse button is pressed

Returns true if the indicated mouse button is pressed. A standard use is in the step event.
Y ou can check whether a mouse button is pressed and, if so, for example move to that
position (use the jJump to a point action with values rouse_x and nouse_y).

If instanceis aligned with grid

Returns true if the position of the instance lies on a grid. Y ou specify the horizontal and
vertical spacing of the grid. Thisis very useful when certain actions, like making aturn,
are only allowed when the instance is on a grid position.

If avariable hasavalue

There are many built-in variables in the game and you can create your own ones. With
this action you can check what the value of aparticular variable is. If the value of the
variable is equal to the number the question returns true. Otherwise it returns false. You
can also indicate that the check should be whether the value is smaller than the given
value or larger than the given value. See below for more information about variables.
Actually, you can use this condition also to compare two expressions.

@ Else

Behind this action the el se part follows, that is executed when the result of the question is
false.

& Start of block
Indicates the start of a block of actions.

v End of block

Indicates the end of a block of actions.

@ Repeat next action
This action is used to repeat the next action (or block of actions) a number of times. Y ou
simply indicate the number.

ERIT

Exit the current event

When this action is encountered no further action in this event are executed. Thisis
typically used after a question. For example, when a position is free nothing needs to be
done so we exit the event. In this example, the following actions are only executed when
thereisacollision.

35

12,5 Drawing actions

Drawing actions only make sense in the drawing event. At other places they are basically
ignored. Please remember that drawing things other than sprites and background images
isrelatively slow. So use this only when strictly necessary.

@ Draw a spriteimage

Y ou specify the sprite, the position (either absolute or relative to the current instance
position) and the subimage of the sprite. (The subimages are number from O upwards.) If
you want to draw the current subimage, use number —1.

Draw a background image
Y ou indicate the background image, the position (absolute or relative) and whether the
image should betiled all over the room or not.

@ Draw atext

Y ou specify the text and the position. A # symbol in the text is interpreted as going to a
new line. So you can create multi-line texts. If the text starts with a quote or a double
quote, it is interpreted as an expression. For example, you can use

"Score: ' + string(score)

to display the value of the score. (The variable score stores the current store. The function
string() turns this number into a string. + combines the two strings.) In asimilar way you
can display the number of lives left or any other variable.

@ Set the font for drawing text
You can set the font that is from this moment on used for drawing text.

@ Draw arectangle
Y ou specify the coordinates of the two opposite corners of the rectangle; either absolute
or relative to the current instance position.

@ Draw an €llipse
Y ou specify the coordinates of the two opposite corners of the surrounding rectangle;
either absolute or relative to the current instance position.

@Drawaline

Y ou specify the coordinates of the two endpoints of the line; either absolute or relative to
the current instance position.

@ Set thefill color
Lets you set the color used to fill the rectangles and ellipses.

36

@ Set theline color
Lets you set the color used for the lines around the rectangle and ellipse and when
drawing aline.

Draw the value of a variable

There are many built-in variables in the game and you can create your own ones. With
this action you can draw the value of avariable at a particular position on the screen. One
of the most common uses is to draw the current score on the screen.

12.6 Coderelated actions
Finally there are a number of actions that primarily deal with code.

B Execute a script

With this action you can execute a script that you added to the game. Y ou specify the
script and the maximal 3 arguments for the script. See Chapter 19 for more information
about scripts.

Set thevalue of avariable

There are many built-in variables in the game. With this action you can change these.
Also you can create your own variables and assign values to them. Y ou specify the name
of the variable and the new value. When you check the Relative box the value is added to
the current value of the variable. Please note that this can only be done if the variable
already has a value assigned to it! See below for more information about variables.

Execute a piece of code

When you add this action, a form shows in which you can type in a piece of code. This
works in exactly the same way as when defining scripts (see Chapter 19). The only
difference is that you can indicate for what instances the piece of code must be executed.
Use the code action for small pieces of code. For longer pieces you are strongly advised
to use scripts.

CALL

22 Call the inherited event
This action is only useful when the object has a parent object (see Chapter 17). It calsthe
corresponding event in the parent object.

1 | comment

Use this action to add a line of comment to the action list. The line is shown in italic font.
It does not do anything when executing the event. Adding comments helps you remember
what your events are doing.

37

12.7 Using expressions and variables

In many actions you need to provide values for parameters. Rather than just typing a
number, you can also type aformula, e.g. 32*12. But you can actually type much more
complicated expressions. For example, if you want to double the horizontal speed, you
could set it to 2* hspeed. Here hspeed is a variable indicating the current horizontal
speed of the instance. There are alarge number of other variables that you can use. Some
of the most important ones are:

x the x-coordinate of the instance

y the y-coordinate of the instance

hspeed the horizontal speed (in pixels per step)

vspeed the vertical speed (in pixels per step)

di rect i on the current direction of motion in degrees (0-360)

speed the current speed in this direction

vi si bl e whether the object isvisible (1) or invisible (0)

i mage_scal e the amount the image is scaled (1 = not scaled)

i mage_si ngl e this variable indicate which subimage in the current sprite must
be shown; if you set it to —1 (default) you loop through the images, otherwise only
the indicated subimage (starting with number 0) is shown al the time

scor e the current value of the score

l'i ves the current number of lives

nmouse_x x-position of the mouse

nmouse_y y-position of the mouse

Y ou can change most of these variables using the set variable action. Y ou can aso define
your own variables by setting them to a value. (Don’t use relative, because they don’t
exist yet.) Then you can use these variables in expressions. Variables you create are local
to the current instance. That is, each object has its own copy of them. To create a global
variable, put the word global and a dot in front of it.

Y ou can also refer to the values of variables for other objects by putting the object name
and adot in front of them. So for example, if you want a ball to move to the place where
the coin is you can set the position to (coi n. x , coi n. y). Inthe case of acollison
event you can refer to the x-coordinate of the other object as ot her . x. In conditional
expressions you can use comparisons like < (smaller than), >, etc.

In your expressions you can a so use functions. For example, the function r andon{ 10)
gives arandom real number below 10. So you can set for example the speed or direction
of motion to a random value. Many more functions exist. For more precise information
on expressions and functions see Chapter 25 and further.

38

Chapter 13 Creating rooms

Now that you have defined object with their behavior in the form of events and actions, it
istime to create the rooms or levels in which the game takes place. Any game will need
at least one room. In these rooms we place instances of the objects. Once the game starts
the first room is shown and the instances in it come to life because of the actions in their
creation events.

There are alarge number of possibilities when creating rooms. Besides setting a number
of properties and adding the instances of the objects you can add backgrounds, define
views, and add tiles. Most of these options are discusses later in Chapter 18. In this
chapter we will only discuss some basic settings, the addition of instances of objects, and
the setting of background images.

To create aroom, choose Add Room from the Add menu. The following form will
appear:

il Room Properties o] x|

Object to add with left mousze:

Iu:ar_ra-:ing E |

v Delete underlying —

[Clear == Shift

Sort by Sort by

4 | I

|x: 16 |';.f: 1] ||:|I:|ject: |i|:|:

' 0K

At the left you will see five tab pages. The Objects tab is where you add instances of
objects to the room. In the Settings tab you can indicate a number of settings for the
room. In the Backgrounds tab you can set background images for the room. In the Views

39

tab you can define views that show only a limited part of the room. And in the tab Tiles
you can add tiles to the room.

13.1 Adding instances

At the right of the room design form you see the room. At the start it is empty, with a
gray background.

To add instances to the room, first select the object you want to add by clicking on the
button with the menu icon (or by clicking in the image area at the |eft). The image of the
object appears at the left. (Note that there is a cross in the image. This indicates how the
instances will be aligned with the grid.) Now click with your left mouse button in the
room area at the right. An instance of the object appears. It will snap to the indicated grid.
(You can change the grid in the setting; see below. If you hold the <Alt> key while
placing the instance it is not aligned to the grid.) With the right mouse button you can
remove instances. In this way you define the contents of the room. If you hold down the
mouse button while dragging it over the room, multiple instances are added or removed.

Asyou will notice, if you place an instance on top of another one, the original instance
disappears. Normally thisis what you wart, but not always. This can be avoided by
unchecking the box labeled Delete underlying at the left. There are three other actions
you can perform using the right mouse button: When you hold the <Citrl> key while
clicking on an instance with the right mouse button, the bottommaost instance at the
position is brought to the top. Holding the <Alt> key will send the topmost instance to the
bottom. This can be used to change the order of overlapping instances. Finally, holding
the <Shift> key while clicking with the right mouse button will remove all instances at
the position, not just the top one.

There are four useful buttons in the tab at the left. When you press the Clear button all
instances are removed from the room. When you press the Shift button you can shift al
instances over a number of pixels. Use negative numbers to shift them left or up. Thisis
useful when you decided to e.g. enlarge the room. (Y ou can aso use thisto place
instances outside the room, which is sometimes useful.) Finally there are two buttons to
sort the instances by X or by Y coordinate. This is useful when instances partially
overlap.

13.2 Room setting

Each room has a number of settings that you can change by clicking on the Settings tab.
We will only consider the most important ones here.

Each room has a name. Best give it a meaningful name. There also is a caption. This
caption is displayed in the window caption when the game is running. Y ou can set the
width and height of the room (in pixels). Also you can set the speed of the game. Thisis
the number of steps per second. The higher the speed, the smoother the motion is. But
you will need a rather fast computer to run it.

40

At the bottom of the Settings tab you can indicate the size of the grid cells used for
aligning objects. By clicking on the button labeled Show you can indicate whether to e.g.
show the grid lines. (Y ou can aso indicate here whether to show the backgrounds, etc. It
is sometimes useful to temporarily hide certain aspects of the room.)

13.3 Setting the background

With the tab Backgrounds you can set the background image for the room. Actually, you
can specify multiple backgrounds. The tab page looks as follows:

Objects | Settings I Tiles

...... E ackgruunds I Views

[+ Draw background caolor

| background color |

Backaround 1
Backaground 2
Background 3
Backaground 4
Backaground 5
Background B LI

[T “isible when roomm starks

[T Eoreground image

|<n|:| images El
[+ TileHaor. v Tile et
i |EI ¥ |IZI

Har. Speed: IEI
Wert. Speed: IEI

At the top you will see the background color. Y ou can click
on it to change it. The background color is only useful if you
don't use a background image that covers the whole room.
Otherwise, you better uncheck the box labeled Draw
background color because this will be a waste of time.

At the top you see alist of 8 backgrounds. Y ou can define
each of them but most of the time you will need just one or
two. To define a background, first select it in the list. Next
check the box labeled Visible when room starts otherwise
you won't see it. The name of the background will become
bold when it is defined. Now indicate a background image in
the menu. There are a number of settings you can change.
First of al you can indicate whether the background image
should tile the room horizontally and/or vertically. You can
also indicate the position of the background in the room (this
will aso influence the tiling). Finally you can make the
background scrolling by giving it a horizontal or vertical
speed (pixels per step).

There is one more checkbox labeled Foreground image.

When you check this box, the background is actually a foreground, which is drawn on top
of everything else rather than behind it. Clearly such an image should be partially

transparent to be of any use.

41

Chapter 14 More about sprites

Up to now we loaded our sprites from files. It is though also possible to create and in
particular modify them within Game Maker. To do this, open the sprite property window
by double clicking on one of your sprite (or by creating a new one). Now press the button
labeled Edit Sprite. A new form will appear showing all the sub-images that make yp the
sprite.

14.1 Editing your sprites
The sprite edit form will ook as follows:

“i_Spiite Editor B [=] 1
File Edit Tranzform Images Animation
v hEEE > fBE <> f
image O image 1 image 2 image 3
Cpeed: IEU
B ackground Caolor |
| Frames: 4 | Size: 32 0 32 | Tranzparent | o

At the right you see the different images that make up the sprite. Note that in Game
Maker al subimages of a sprite must have the same size. At the left an animation of the
sprite plays. (If you don't see the animation, check the box labeled Show Preview. Below
the preview you can change the speed of the animation and the background color. In this
way you can get an idea of what the animation will look like in the game.

The sprite editor contains many commands to create and change the sprite. These are al

given through the menus. (For some there are buttons on the toolbar.) Some commands
work on individual images. They require that you first select a subimage with the mouse.

14.1.1 File menu
The file menu contains a number of commands related to loading and saving sprites.

New. Create a new, empty sprite. Y ou must indicate the size of the sprite.
(Remember, al images in a sprite must have the same size.)

42

14.1.2
The edi

Create from file. Create the sprite from afile. Many file types can be used. They
all create a sprite consisting of a single image, except for animated GIF files that
are split into the subimages. Please note that Game Maker cannot handle
optimized animated GIF files! Also, note that the transparency color is the
bottommost leftmost pixel, not the transparency color in the GIF file.

Add from file. Add an image (or images) from afile to the current sprite. If the
images do not have the same size you can choose were to place them or to stretch
them.

Save as Gl F. Saves the sprite as an animated gif.

Saveasstrip. Saves the sprite as a bitmap, with all images next to each other.
Create from strip. Allows you to create a sprite from a strip. See below for more
information.

Add from strip. Use this to add images from a strip. See below.

Close saving changes. Closes the form, saving the changes made to the sprite. If
you don't want to save the changes, click on the close button of the window.

Edit menu
t menu contains a number of commands that deal with the currently selected

sprite. You can cut it to the clipboard, paste an image from the clipboard, clear the

current

sprite, delete it, and move sprites left and right in the sequence. Finally, thereisa

command to edit an individual image using the built-in painting program (see below).

14.1.3

Transform menu

In the transform menu you can perform a number of transformations on the images.

14.1.4

Mirror horizontal. Mirrors the images horizontally.

Flip vertical. Flips the images vertically.

Shift. Here you can shift the images an indicated amount horizontally and
verticdly.

Rotate. Y ou can rotate the images 90 degrees, 180 degrees, or an arbitrary
amount. In the latter case you can aso specify the quality. Experiment to get the
best effects.

Resize Canvas. Here you can change the size of the canvas. You can also indicate
where the old images are placed on the new canvas.

Stretch. Here you can stretch the images into a new size. Y ou can indicate the
scale factor and the quality.

Scale. This commands scales the images (but not the image size!). You can
indicate the scale factor, the quality, and the position of the current images in the
scaled ones.

Images menu

In the images menu you can perform a number of operation on the images.

Cycleleft. Cycles all images one place to the left. This effectively starts the
animation at a different point.

43

Cycleright. Cycles al images one place to the right.

Black and white. Makes the sprite black and white (does not affect the
trangparency color!).

Colorize. Here you can change the color (hue) of the images. Use the dider to
pick the different colors.

I ntensity. Here you can change the intensity by providing values for the color
saturation and the lightness of the images.

Fade. Here you specify a color and an amount. The colors in the images are now
faded towards this color.

Transparency. Here you can indicate a level of screen-door transparency. Thisis
achieved by making a number of pixels transparent.

Blur. By blurring the images the colors are mixed a bit, making it more vague.
The higher the value, the more vague it becomes.

Crop. This makes the images as small as possible. Thisis very useful because the
larger the images, the more video memory Game Maker will use. Y ou might want
to leave alittle border around the images though to avoid transparency problems.

Y ou will have to experiment with these commands to get the sprites you want.

14.1.5 Animation menu

Under the animation menu you can create new animations out of the current animation.
There are many options and you should experiment a bit with them to create the effects
you want. Also don't forget that you can always save an animation and later add it to the
current one. Also you can always add some empty images and delete unwanted ones. |
will briefly go through the different possibilities.

Set L ength. Here you can change the length of your animation. The animation is
repeated enough times to create the number of frames you indicate. (Normally
you want this to be a multiple of the current number of frames.)

Stretch. This command also changes the length of the animation. But this time,
frames are duplicated or removed to get the right number. So if you increase the
number of frames the animation goes slower and if you decrease the number it
goes faster.

Reverse. Well, as you could guess this reverses the animation. So it is played
backwards.

Add Reverse. This time the reverse sequence is added, doubling the number of
frames. Thisis very useful for making an object go left and right, change color
and retur n, etc. Y ou sometimes might want to remove the double first and middie
frame that occur.

Trandation sequence. Y ou can create an animation in which the image dightly
trandates in each step. Y ou must provide the number of frames and the total
amount to move horizontally and vertically.

Rotation sequence. Creates an animation in which the image rotates. Y ou can
either choose clockwise or counterclockwise rotation. Specify the number of
frames and the total angle in degrees (360 is a complete turn). (Y ou might need to

resize the canvas first to make sure the total image remains visible during the
rotation.)

Colorize. Creates an animation that turns the image into a particular color.
Fadeto color. Creates an animation that fades the image to a particular color.
Disappear. Makes the image disappear using screen-door transparency.
Shrink. Shrinks the image to nothing. Y ou can indicate the direction.

Grow. Grows the image from nothing.

Flatten. Flattens the image to nothing in a given direction.

Raise. Raises the image from a given direction

Overlay. Overlays the animation with another animation or image in afile.

Mor ph. Morphs the animation to an animation or image from afile. Note that
morphing works best if the two animations cover the same area of the image.
Otherwise, halfway certain pixels disappear and others suddenly appear.

In particular the last two commands are very powerful. For example, to blow up an
object, add a number of copies and then a number of empty frames. Then overlay it with
an explosion animation. (Make sure the number of images match.) Alternatively, morph
it to the explosion. With some practice you can make great sprites.

14.1.6 Strips

As indicated above, sprites are normally either stored as animated gif files or as strips. A
strip is one big bitmap that stores all the images next to each other. The only problem is
that the size of the individual subimagesis not stored in the image. Also, many strip files
available on the web store multiple sprites in one file. For example, in the following piece
of astrip file contains four different animations.

To select individual sprites out of such files, you can choose Create from Strip or Add
from Strip from the File menu. After indicating the appropriate strip image file, the
following form will show:

45

= Loading a strip image

nurnber of images: (4

images per raw: |4

image width: {32
image height: {32

B RE
| i

horizontal cell offset: [

vertical cell offset: [

horizontal pixel offset: [

i i
=
L
>
.'.
J'._"'
5
L

vertical pisel offset: |

:'.'?I'i"‘:.':[:‘_';:':."!'-‘_']

horizontal seperation: |

TETEIRTET

vertical seperation: |

OF.

At the right you see (part of) the strip image you selected. At the left you can specify a
number of parameters that specify which subimages you are interested in. Note that one
or more rectangles in the image indicate the images you are selecting. The following
parameters can be specified:

Number of images. Thisis the number of images you want to take from the strip.
Images per row. How many images of the ones you want are there per row. For
example, by setting thisto 1 you will select a vertical sequence of images.

Image width. Width of the individual images.

Image height. Height of the individual images.

Horizontal cell offset. If you don't want to select the top-left images, you can set
here how many images should be skipped horizontally.

Vertical cell offset. Here you indicate how many images to skip vertically.
Horizontal pixel offset. Sometimes there is some additional space at the left top.
Here you indicate this amount (in pixels).

Vertical pixel offset. Vertical amount of extra space.

Horizontal separation. In some strips there are lines or empty space between the
images. Here you can indicate the horizontal amount to skip between the images
(in pixels).

Vertical separation. Vertical amount to skip between the images.

46

Once you selected the correct set of images, press OK to create your sprite. Please

remember that you are only allowed to use images created by others when you have their
permission or when they are freeware.

14.2 Editing individual sub-images

Y ou can also edit the individual sub-images. To this end select a sub-image and choose
Edit Image from the Image menu. This will open a little built-in painting and imaging
program. Please redlize that thisis alimited program that is mainly meant to make small
changes in existing images and not to draw new ones. For that, you better use a full-

blown drawing program and use files (or copy and paste) to put the image into Game
Maker.

File Edit Text Transform Image

vV voBRR|+e>4 ¥ H

o)
[
¥

left right

il

if&

= |®

ey

I | 4

The form shows the image in the middle and a number of basic drawing buttons at the
left. Here you can zoom in and out, draw pixels, lines, rectangles, text, etc. Note that the
color depends on whether you use the left or right mouse button. For some drawing tools
you can set properties (like line width or border visibility). There is a specia button to
change all pixelsthat have one color into another color. Thisisin particular useful to
change the background color that is used for transparency. On the toolbar there are some
specia buttons to move all pixelsin the image in a particular direction. Also you can

indicate whether to show a grid when the image is zoomed (works only with a zoom
factor of at least 4).

47

At the right of the form you can select the colors to be used (one by the left mouse button
and one by the right button). There are four ways to change the color. First of all you can
click with the mouse button (left or right) in one of the 16 basic colors. Note that there is
aspecial color box that contains the color of the bottom Ieft pixel of the image that is
used as trangparency color if the sprite is transparent. Y ou can use this color to make part
of your image transparent. The second way is to click in the image with the changing
color. Here you choose many more colors. Y ou can hold down the mouse to see the color
you are selecting. Thirdly, you can click with the left mouse in the boxes indicating the
left and right color. A color dialog pops up in which you can select the color. Finally, you
can select the color dropper tool at the left and click on a position in the image to copy
the color there.

In the menus you can finds the same transformation and image changing commands that
are also available in the sprite editor. This time though they only apply to the current
image. (When the sprite has multiple images, commands that change the size, like stretch,
are not available.) You can also save the image as a bitmap file. There are two additional
commands in the | mage menu:

Clear. Clear the image to the left color (which then automatically becomes the
transparency color).

Gradient fill. With this command you can fill the image with a gradually
changing color (not very useful for making sprites, but it looks nice, and can be
used for backgrounds, which use the same paint program).

Note that there is no mechanism to select parts of the image. Also some fancy drawing
routines are missing. For this you should use a more advanced drawing program (or
simply the paint program that comes with Windows). The easiest way to do thisisto use
the copy button to put the image on the clipboard. Now in you painting program, use
paste to get it. Change it and copy it to the clipboard. Now, in Game Maker you can paste
the updated image back in.

14.3 Advanced sprite settings

In the sprite properties form there is an Advanced tab. Here you find a number of
advanced options that we will treat here.

First of all there are options related to collision checking. Whenever two instances meet a
collision event is generated. Collisions are checked in the following way. Each sprite has
a bounding box. Thisbox is such that it contains the non-transparent part of al the
subimages. When the bounding boxes do overlap, it is checked whether two pixelsin the
current subimages of the two sprites overlap. This second operation is expensive and
requires extra memory and preprocessing. So if you are not interested in precise collision
checking for a certain sprite, you should uncheck the box labeled Precise collision
checking. In this case only bounding box checking is performed. Y ou can also change
the bounding box. Thisis hardly ever required but sometimes you might want to make
the bounding box smaller, such that collisions with some extending parts of the sprite are
not taken into account.

48

Sprites can be stored in two places: video memory and standard memory. Video memory
is normally locate on the graphics card and is faster. So if you have many instances of the
sprite you prefer to store it there. But the amount of video memory is limited, depending
on the graphics card the player has. So you are recommended to store large sprites not in
video memory.

Some sprites you might use only in one or two levels of your game. It is a bit wasteful to
keep these spritesin memory all the time. In this case you can check the box labeled
Load only on use. The sprite is now loaded at the first moment it is required. At the end
of the room it is discarded again to free the memory. For large games with many sprites it
is important to carefully manage which sprites are loaded and which ones are in video
memory. (You can aso load and discard sprites from pieces of code.)

Finally, you can indicate the origin of the sprite. Thisis the point in the sprite that
corresponds with its position. When you set an instance at a particular position, the origin
of the sprite is placed there. Default it is the top left corner of the sprite but it is
sometimes more convenient to use the center or some other important point. You can
even choose an origin outside the sprite.

49

Chapter 15 More about sounds and music

When you add sound resources to your game there are a number of other aspects that you
can indicate. These are found under the advanced tab in the sound property form.

For al sounds you can indicate whether they should be loaded only on use. Thisisthe
default for midi files but not for wave files. If you check this box, the sound is not loaded
into memory when the game starts. Only at the moment it is needed it is loaded. This
might give a dight hick-up. But is saves alot of memory and it means that loading the
game s faster. Also, at the end of the room, the sound is discarded and the memory is
freed. Only if it isrequired again is it loaded again. Don't use this for short sound effects
but only for longer background music or fragments that are played only occasionaly.

For wave files you can indicate the number of buffers. This number indicated the number
of times the sound can play simultaneously. For example, when you have some exploding
sound and a number of explosions can happen at amost the same time, you might want to
increase this number such that all explosions can be heard simultaneously. Be careful
though. Multiple buffers cost (depending on the sound card) more memory.

Also you can indicate whether the sound should be prepared for sound effects. These
effects, like panning the sound and changing the volume, can only be used from code.
Sounds that allow for sound effects take up more resources.

There is also a button here to save the sound in afile. Thisis useful when you lost the
original sound file and want to use the sound for something else.

Besides wave files and midi files, there is actually athird kind of sound files: mp3 files.
These are compressed wave files. Although you don't see them when selecting a sound
file you can actually use them in Game Maker. First select to show all files at the bottom
of the file open dialog, and you can load them. Be careful though. There are a number of
disadvantages. First of al, they need to be decompressed which takes processing time
and might dow down the game. The fact that the file size is smaller does not mean that
they use less memory. Secondly, not all machines support them. So your game might not
run on all machines. Preferably don't use them but convert your mp3 files into wave files.
If you still want to use them, only use them as background music.

50

Chapter 16 More about backgrounds

Besides loading them from files, you can also create your own backgrounds. To this end,
press the button labeled Edit Background. A little built-in painting program opensin
which you can create or change your background. Please realize that thisis not a full-
blown program. For more advanced editing tools use some paint program. The built-in
paint program is described in Section 14.2. There is one option that is particularly useful.
In the Image menu you find a command Gradient Fill. This can be used to create some
nice gradient backgrounds.

Also the background property from has an Advanced tab. Here a number of advanced
aspects of backgrounds are available.

Normally backgrounds are stored in video memory. This is fine when they are small but
when you use large backgrounds you might want to use norma memory instead. This
will be dightly slower, but video memory islimited. To this end uncheck the box labeled
Use video memory.

Also, default backgrounds are loaded when they are needed and discarded again at the
end of the room. This saves alot of memory but will make the starting of room dlightly
dower and can give alittle hick-up when changing the background halfway aroom. To
avoid this, uncheck the box labeled L oad only on use.

51

Chapter 17 More about objects

When you create an object, you can change some more advanced setting in the
Advanced tab.

17.1 Depth

First of all, you can set the Depth of the instances of the object. When the instances are
drawn on the screen they are drawn in order of depth. Instances with the largest depth are
drawn first. Instances with the smallest depth are drawn last. When instances have the
same depth, they are drawn in the order in which they were created. If you want to
guarantee that an object liesin front of the others give it a negative depth. If you want to
make sure it lies below other instances, give it alarge positive depth. Y ou can also
change the depth of an instance during the game using the variable called depth.

17.2 Persistent objects

Secondly, you can make an object persistent. A persistent object will continue existing
when you move from one room to the next. It only disappears when you explicitly
destroy it. So you only need to put an instance of the object in the first room and then it
will remain available in al rooms. Thisis great when you have e.g. a main character that
moves from room to room. Using persistent objects is a powerful mechanism but also one
that easily leads to errors.

17.3 Parents

Every object can have a parent object. When an object has a parent, it inherits the
behavior of the parent. Stated differently, the object is sort of a special case of the parent
object. For example, if you have 4 different balls, named ball1, ball2, ball3 and ball4, that
all behave the same but have a different sprite, you can make ball1 the parent of the other
three. Now you only need to specify events for ball1. The others will inherit the events
and behave exactly the same way. Also, when you apply actions to instances of the parent
object they will also be applied to the children. So, for example, if you destroy all balll
instances also the ball2, ball3, and ball4 instances will be destroyed. This saves alot of
work.

Often, objects should behave amost completely the same but there will be some small
differences. For example, one monster might move up and down and the other left and
right. For the rest they have exactly the same behavior. In this case dmost all events
should have the same actions but one or two might be different. Again we can make one
object the parent of the other. But in this case we also define certain events for the child
object. These events "override" the parent events. So whenever an event for the child
object contains actions, these are executed instead of the event of the parent. If you also
want to execute the parent event you can call the so-called "inherited” event using the
appropriate action.

52

Parent objects can again have parents, and so on. (Obviously you are not alowed to
create cycles.) In thisway you can create an object hierarchy. Thisis extremely useful to
keep you game structured and you are strongly advised to learn to use this mechanism.

There is also a second use of the parent object. It also inherits the collision behavior for
other objects. Let me explain this with an example. Assume you have four different floor
objects. When a ball hits the floor it must change direction. This has to be specified in the
collision event of the ball with the floor. Because there are four different floors we need
to put the code on four different collision events of the ball. But when you make one floor
the parent of the other three, you only need to specify the collision event with this one
floor. The other collisions will perform the same event. Again, this saves alot of copying.

As indicated, wherever you use an object, this also implies the descendants. This happens
when, in an action, you indicate that the action must be applied to instances of a certain
object. It also happens when you use the with() statement in code (see below). And it
works when you call functions like instance_position, instance_number, etc. Finaly, it
works when you refer to variables in other objects. In the example above when you set
ball1.speed to 10 this aso appliesto ball2, ball3 and ball4.

17.4 Masks

When two instances collide a collision event occurs. To decide whether two instances
intersect, the sprites are used. Thisis fine in most cases, but sometimes you want to base
collisions on a different shape. For example, if you make an isometric game, objects
typicaly have a height (to give them a 3D view). But for collisions you only want to use
the ground part of the sprite. This can be achieved by creating a separate sprite that is
used as collision mask for the object.

53

Chapter 18 More about rooms

Rooms in Game Maker have many options. In Chapter 13 we only treated the most
important ones. In this chapter we will discuss the other options.

18.1 Advanced settings

There where two aspects in the Settings tab that we did not yet discuss. First of al, there
is a checkbox labeled Persistent. Normally, when you leave a room and return to the
same room later, the room is reset to itsinitial settings. Thisisfine if you have a number
of levelsin you game but it is normally not what you want in for example an RPG. Here
the room should be the way you left it the last time. Checking the box labeled Persistent
will do exactly that. The room status will be remembered and when you return to it later,
it will be exactly the same as you left it. Only when you restart the game will the room be
reset. Actualy, there is one exception to this. If you marked certain objects as being
persistent (see Chapter 17), instances of this object will not stay in the room but move to
the next room.

Secondly, there is a button labeled Creation code. Here you can type in a piece of code
in GML (see later) that is executed when the room is created. Thisis useful to e.g. fill in
certain variables for the room, create certain instances, etc. It is useful to understand what
exactly happens when you move to a particular room in the game.
- First, in the current room (if any) al instances get aroomend event. Next the
non-persistent instances are removed (no destroy event is generated!).
Next, for the new room the persistent instances from the previous room are added.
All new instances are created and their creation events are executed (if theroom is
not persistent or has not been visited before).
When thisis the first room, for all instances the game-start event is generated.
Now the room creation code is executed.
Finally, all instances get aroomend event.
So, for example, the room-start events can use variables set by the creation code for the
room and in the creation code you can refer to the instances (both new ones and persistent
ones) in the room.

18.2 Adding tiles

Y ou can also create so-called tiled background. The reason for thisis as follows: In many
games you like to have nice looking backgrounds. For example, in a maze game, the
walls of the maze should nicely match up, and in platform game you like to see
beautifully drawn platforms, trees, etc. Y ou can do thisin Game Maker by defining many
different objects and composing your rooms from these objects. The problem though is
that this takes alot of work, uses large amounts of resources, and makes the games slow
because of the many different objects. For example, to create nice walls in maze games
you already need 15 differently shaped wall objects.

The standard way out, used in many games, is that the walls and other static objects are
actually drawn on the background. But, you might ask, how does the game know that an

object hitsawall if it is drawn on the background only? The trick is asfollows. You
create just one wall object in your game. It must have the right size but it does not need to
look nice. When creating the room, place this object at all places where thereisawall.
And, here comes the trick, we make this object invisible. So when playing the game you
don’'t see the wall objects. You see the beautiful background instead. But the solid wall
objects are till there and the object in the game will react to them.

Y ou can use this technique for any object that is not changing its shape or position. (Y ou
can also not use it when the object must be animated.) For platform games, you probably
need just one floor and one wall object, but you can make beautifully looking
backgrounds where it looks as if you walk on grass, on tree brarches, etc.

To add tiles to your room you first need to add a background image to your game that
contains thetiles. A few of these are provided with Game Maker. If you want to have
your tiles partially transparent, make sure you make the background image transparent.
Now, when defining your room, click on the tab Tiles. The following form is shown
(actually, we aready added some tilesin this room).

5| Room Properties

[~ Eoreground Hles

Ibackgmundﬂ El

[+ Delete underving
width |16 height |16
Hzep |'| Yzep |1

[% Clear | == Shift |

& 0K

192 w0 | object: |id:

At the left top there is the current set of tiles used. To select the set, click on the menu
button below it and select the appropriate background image. Below the tile set you can

55

change a number of settings. Y ou can set the width and height of an individual tile, and a
separation between the tiles (thisis normally O or 1).

Now you can add tile by selecting the tile you want at the top left, and next clicking at the
appropriate place in the room at the right. This works in exactly the same way as for
adding instances. Underlying tiles are removed, unless you uncheck the box Delete
underlying. You can use the right button to delete tiles. There are also buttons to clear all
tilesand to shift all tiles.

Note that there is abox labeled Foreground tiles. If you check this, the tiles will be
drawn in front of the objects rather than behind them. This can be used in many ways.
Note that when you check the box aso only foreground tiles are removed.

Using tilesis a powerful feature that should be used as much as possible. It is much faster
than using objects and the tile images are stored only once. So you can use large tiles
rooms with very little memory consumption.

18.3 Views

Finaly, there is atab labeled Views. This gives a mechanism of drawing different parts
of your room at different places on the screen. There are many uses for views. First of all,
in a number games you want to show only part of the room at any time. For example, in
most platform games, the view follows the main character. In two-player games you
often want a split-screen mode in which in one part of the screen you see one player and
in another part you see the other player. A third useisin gamesin which part of the room
should scroll with e.g. the main character while another part is fixed (for example some
status panel). This can all be easily achieved in Game Maker.

When you click the tab labeled Views the following information will show:

Dbjects | Settings | Ties || At the top there is a box labeled Enable the use of Views.
Backarounds | wiews i Y ou much check this box to use views. Below this you see the
: list of at most eight views you can define. Below the list you
I Enable the use ofViews | ooy gjve information for the views. First of all you must

indicate whether the view should be visible when the room

iew 1 Starts. Make sure at least one view isvisible. Visible views are
e & . .

e 3 shown in bold. Next you indicate the area of the room that

e 4 x| | should be shown in the view. Y ou specify the left and top

I~ | Visible when raom starts position, and the width and the height of the view. Below that
Left I—D Top I_IZI you indicate the position of the view on the screen.

wi[s0 B [0 As indicated above, you often want the view to follow a
certain object. This object you can indicate at the bottom. If
%[0 w[o | therearemultiple instances of this object, only thefirst oneis
followed by the view. Normally the character should be able
HBer: [32 VBor [32 | towalk around abit without the view changing. Only when
Hsp: |1— Vip: |1— the character gets close to the boundary of the view, should

Object ta follow:

|< ho object: EI 56

the view change. Y ou can specify the size of the border that must remain visible around
the object. Finaly, you can restrict the speed with which the view changes. This might
mean that the character can walk of the screen, but it gives a much smoother game play.
Use—1 if you want the view to change instantaneoudly.

57

Chapter 19 Paths

In more advanced games you often want to let instances follow certain paths. Even
though you can indicate this by e.g. using timer events or code, this is rather complicated.
Path resources are an easier mechanism for this. The ideais rather ssimple. You define a
path by drawing it. Next you can place an action in e.g. the creation event of the object to
tell the object to follow the particular path. This chapter will explain thisin detail. The
current implementation is rather limited. Expect more possibilities in future versions
(compatible with the current version).

19.1 Defining paths

To add a path to your game, choose Add Path from the Add menu. The following form
will pop up (in the example we already added a little path).

|2* path Properties =10 x|

Hame: Ipathﬂ

(29,46 spr 100 el
[li4,E) spi L0 -
[107,.-59) sp: 100 Y I.-||:|
[24,-54) spi L0 -

[-Bl.-71) sp: 100 N ‘||:||:|
[-62,-E5) spr log

[-50.11) spr 100

[-£2.-£00 sp: 100 Add
[2%,-24) sp: 10 —

— connection kind
{ Straight lines

— action at the end
™ Stop moving © Beverse
" Jump to start © Continue
' Move to start

o OK

At the left top of the form you can set the name of the path, as usua. Below it you find
the points that define the path. Each point has both a position and a speed (indicated with
sp). The position is not absolute Asisindicated below, the instance will always start at
the first position on the path and follow the path from there. The speed should be
interpreted as follows. A vaue of 100 means the original speed of the instance. A lower
value reduces the speed, a higher value increases it (so it indicates the percentage of the
actual speed). Speed will be interpolated between points, so the speed changes gradually.

58

To add a point press the button Add. Now you can indicate the actual position and speed.
Whenever you select a point in the list, you can also change its values. Press Insert to
insert a new point before the current one, and Delete to delete the current point. Finally,
you can use Clear to completely clear the path.

At the right of the form you will see the actual path. Y ou can also change the path using
the mouse. Click anywhere on the image to add a point. Click on an existing point and
drag it to change its position. When you hold <Shift> while clicking on a point, you
insert a point. Finally, you can use the right mouse button to remove points. (Note that
you cannot change the speed this way.)

Y ou can influence the shape of the path in two ways. Fist of all you can use the type of
connection. You can either choose straight line connections or a smooth path. Secondly,
you can indicate what should happen when the last point is reached. There are a number
of options. The most common is to keep on moving to the first point, closing the path.
Alternatively you can stop moving, jump to the first point, or traverse the same path
backwards. The final option restarts the path from its current position. In this way the
path will normally "walk away". Only the first five iterations are shown but the path will
continue after that.

19.2 Assigning paths to objects

To assign a path to an instance of an object, you can place the path action in some event,
for example in the creation event. In this action you must specify the path from the drop
down menu. There are two further values you can provide. First of al there is the speed
with which the path must be executed. (This is the same as the normal speed setting.)
Remember that when defining the path you specify the actual speed relative to this
indicated speed. Secondly you can indicate where the path should be started. A value of O
indicates the start (which is most common). A value of 1 indicates the end of the path,
that is, the moment the path is executed a second time. E.g. when the path is reversing, a
value of 0.5 isthe moment where it reverses.

When using scripts or pieces of code you have more control over the way the path is
executed. There are four variables that influence this. The variable path_index indicates
the index of the path. The variable path_position indicates the current position on the path
(between 0 and 1 as indicated above). It changes while the instance follows the path. The
speed is controlled by the standard speed variable. Note that the direction variableisin
each step automatically set to the correct direction along the path. So you can use this
variable to e.g. choose the correct subimage. A variable path_scale can be used to scale
the path. A value of 1 isthe origina size. A larger value indicates that the path is made
larger, a smaller value makes it smaller. The variable path_orientation indicates the
orientation in which the path is executed (in degrees counter-clockwise). This enables
you to execute the path in a different orientation (e.g. moving up and down rather than
left and right).

Y ou might wonder what happens when the instance collides with another instance while
it follows a path. First of the collision event is executed. If the other instance is solid the

59

instance will stop, as it should (assuming there is a collision event defined). The
path_position variable will though continue to follow the path. So at some moment the
instance might start moving again in a different direction, if such a position is reached on
the path.

19.3 The path event

As described above, you can indicate what must happen when the instance reaches the
end of the path. At thismoment also an End of Path event occurs. Y ou can find it under
the Other events. Here you can place actions. For example, you might want to destroy
the instance, or let it start a new (different) path.

60

Chapter 20 Scripts

Game Maker has abuilt-in programming language. Once you get more familiar with
Game Maker and want to use it to its fullest extend, it is advisable to start learning to use
this language. For a complete description see Chapter 25. There are two ways to use the
language. First of all you can create scripts. These are pieces of code that you give a
name. They are shown in the resource tree and can be save to afile and loaded from a
file. They can be used to form alibrary that extends the possibilities of Game Maker.
Alternatively, you can add a code action to some event and type a piece of code there.
Adding code actions works in exactly the same way as adding scripts except for two
differences. Code actions don't have a name and cannot use arguments. Also they have
the well-known field to indicate to what objects the action should apply. For the rest you
enter code in exactly the same way as in scripts. So we further concentrate on scriptsin
this chapter.

As stated before, a script is apiece of code in the built-in programming language that
performs a particular task. A script can take a number of arguments. To execute a script
from within some event, you can use the script action. In this action you specify the script
you want to execute, together with the up to three arguments. (Y ou can also execute
scripts from within a piece of code in the same way you call afunction. In that case you
can use up to 10 arguments.) When the script returns a value, you can also use it as a
function when providing values in other actions.

To add a script to your game, choose Add Script from the Add menu. The following
form will pop up (in the example we aready added a little script that computed the
product of the two arguments).

8| Script Properties
of | LR O # M = LY Mame |multiply

{

return arcguument0¥arogumentl;

H

l3 2

61

At the top right you canindicate the name of the script. You have alittle editor in which
you can type the script. There are afew buttons for cut and paste and for loading or
saving the script as atext file. Finally there is a button with which you can test whether
the script is correct. Not all aspects can be tested at this stage but the syntax of your script
will be tested, together with the existence of functions used.

As you might have noticed, parts of the script text are colored. The editor knows about
existing objects, built-in variables and functions, etc. Color-coding helps alot in avoiding
mistakes. In particular, you see immediately if you misspelled some name or use a
keyword as a variable. Color-coding is though a bit Slow. In the preferences in the file
menu you can switch color-coding on and off. Here you can also change the color for the
different components of the programs. Also you can change the font used in scripts and
code.

Scripts are extremely useful to extend the possibilities of Game Maker. This does though
require that you design your scripts careful. Scripts can be stored in libraries that can be
added to your game. To import alibrary, use the itemImport scripts from the file menu.
To save your scriptsin the form of alibrary use Export scripts. Script libraries are
simple text files (although they have the extension .gml). Preferably don't edit them
directly because they have a special structure. Some libraries with useful scripts are
included. (To avoid unnecessary work when loading the game, after importing alibrary,
best delete those scripts that you don't use.)

When creating scripts you easily make mistakes. Always test the scripts by using the
appropriate button. When an error occurs during the execution of a script thisis reported,
with an indication of the type of error and the place. If you need to check things more
carefully, you can run the game in debug mode. Now a form appears in which you can
monitor certain information in your game. Using the Add button you can type in some
expression whose value is shown in each step of the game. In this way you can see
whether your game is doing things the right way. Also you can pause your game, perform
it step by step, and restart it. Furthermore, an indication of the speed in frames per second
is given.

62

Chapter 21 Game information

A good game provides the player with some information on how to play the game. This
information is displayed when the player presses the <F1> key during game play. To
create the game information, double click Game Infor mationin the resource tree at the
left of the screen A little build-in editor is opened where you can edit the game
information. Y ou can use different fonts, different colors, and styles. Also you can set the
background color.

One interesting option in the Format menu isto Mimic Main Form. When you check
this option the help form is displayed exactly at the position and the size of the game
form. As aresult it looks like the text appears in the game window. Choosing the correct
background color now provides a nice visual effect. (Y ou might want to indicate at the
bottom of the help file that the user must press Escape to continue playing.)

A good advice is to make the information short but precise. Of course you should add
your name because you created the game. All example games provided have an
information file about the game and how it was created.

If you want to make a bit more fancy help, use e.g. Word. Then select the part you want
and use copy and paste to move it from Word to the game information editor.

63

Chapter 22 Game options

There are a number of options you can change for your game. They can be found by
double clicking on Game Options in the resource tree at the left of the screen. They are
subdivided in a number of tabbed pages.

22.1 Graphics options

In this tab youcan set a number of options that are related to the graphical appearance of
your game. It is normally useful to check out the effects of these options because they can
have a significant effect on the way the game looks. Remember though that different
users have different machines. So better make sure that the settings also work on other
peoples machines.

Start in fullscreen mode
When checked the game runs in the full screen; otherwise it runs in a window.

Scale per centage in windowed mode

Here you can indicate that the image in windowed mode should be scaled. 100 is ho
scaling. You typically use when your sprites and rooms are very small. Scaling is slower
but most modern graphics cards can do this with little overhead. Better don't use values
below 100 because scaling down is normally very slow.

Scale percentage in fullscreen mode

Here you can indicate that the image in fullscreen mode should be scaled. 100 is no
scaling. A value of 0 indicates maximal possible scaling. Scaling is Slower but most
modern graphics cards can do this with little overhead. Better don't use values below 100
because scaling down is normally very slow.

Only scale when thereis hardwar e support

If you check this scaling is only done when there is hardware support for this.
Unfortunately though some graphics cards indicate that there is hardware support even if
there is not.

Set the resolution of the screen

The screen has a particular resolution. Three aspects play arole here: the number of
pixels (horizontal and vertical) on the screen, the number of bits used for representing the
colors, and the frequency with which the screen is refreshed. Normally Game Maker does
not change these settings, that is, it uses the settings for the machine on which the gameis
running. This can lead to poor graphics. For example, if your rooms are small and a user
uses a large screen resolution, the game will play in avery small window. Y ou can solve
this by using full screen mode and scaling the image, but that might slow down the game.
The best way to solve thisisto tell Game Maker to change the screen resolution when
running the game. It will change it back afterwards. To do so, check this option. A
number of additional optionswill occur, namely the color depth setting (16 or 32 bits;
normally 16 bitsis best), the screen size (640x480, 800x600, 1024x768, or 1280x1024;
be careful with the largest one though, not al computers support it; you can also indicate

64

not to change the screen size), and the frequency (60, 70, 85, 100; if the one you specify
is too high, the default frequency is used; you can also specify to use the default
frequency). Also the following option occurs:

Use exclusive graphics mode

In exclusive mode, the game has the full control over the screen. No other applications
can use it anymore. It makes the graphics often a bit faster and allows for some special
effects (like gamma settings). If you want to make sure the computer of the player is and
stays in the right screen resolution, you best use exclusive mode. A warning isin place
though. In exclusive mode no other windows can show. This e.g. means that you cannot
use actions that display a message, ask a question, show the highscore list, or show the
game information. Also no errors can be reported. In general, when something goes
wrong in exclusive mode the game ends, and sometimes this does not help and the player
has no other option than to restart the computer. So make sure your game works
absolutely correct. Y ou cannot run your game in debug mode when using exclusive
mode.

Wait for vertical blank before drawing

The screen of your computer is refresned a number of times per second (normally
between 50 and 100). After refreshing the screen thereis a so-called vertical blank in
which nothing happens on the screen. If you draw the screen continuoudly, part of one
image and part of the next might show on the screen, which can give a poor visual effect.
If you wait for the vertical blank before drawing the next frame, this problem disappears.
The disadvantage is that the program must wait for the vertical blank which will dow it
down dlightly.

Display the cur sor
Indicates whether you want the mouse pointer to be visible. Turning it off is normally
faster and nicer. (You can easily make you own cursor object in Game Maker.)

Display the caption in fullscreen mode

When checked, in fullscreen mode a little white box is drawn at the left top, displaying
the room caption, the score and the number of lives. Y ou can switch this off here. It is
normally nicer if you draw these things yourself at an appropriate place in your rooms.

22.2 Key options

Let <Esc> end the game

When checked, pressing the escape key will end the game. More advanced games
normally don't want this to happen because they might want to do some processing (like
saving) before ending the game. In this case, uncheck this box and provide your own
actions for the escape key. (Clicking on the cross of the window will also generate an
escape key event.)

L et <F1> show the gameinformation

When checked pressing the F1 key will display the game information (not in exclusive
mode).

65

Let <F4> switch between screen modes
When checked the F4 key will switch between fullscreen and windowed mode (not in
exclusive mode).

L et <F5> and <F6> load and save the game
When checked the player can use <F5> to store the current game situation and <F6> to
load the last saved game.

22.3 Interaction options

Gener ate continuous keyboar d events

When checked, keyboard events are created in each step as long as akey is pressed.
When unchecked the event is only generated the moment the key is pressed (and once it
starts repeating). For different types of games you need a different setting here. This
setting is obsol ete now because there are separate events that only happen once when a
key is pressed.

Generate continuous mouse events

When checked mouse events are created in each step as long as a mouse button is
pressed. When unchecked the event is only generated once when the button is pressed.
This setting is obsol ete now because there are separate events that only happen once
when a button is pressed.

Freeze the game when the form looses focus
When checked, whenever the player brings some other form to the top (e.g. another
application) the game freezes until the game window again gets the focus.

22.4 Score options

Show the score
When checked, the score is shown in the caption. Also the number of livesis shown in
the caption.

The other options deal with the appearance of the highscore list. First of al you can give
the highscore list a background image (preferably of size 360x400 but it will be stretched
otherwise). Alternatively, you can specify the background color. Next you can indicate
the color used for the text and color used for the new item when the player has a new
highest score. Y ou can aso indicate the font for the text and finally you can indicate
whether the form should have a border and a caption or not. Using the correct settings
will lead to appealing highscore lists.

22,5 Loading options

Here you can indicate what should happen when loading a game. First of all you can
specify your own loading image. Secondly, you can indicate whether to display aloading
progress bar at the bottom of the image. Y ou have three options here. Either no loading
bar is displayed, or the default bar is displayed or you can specify two images. the

66

background of the loading bar and the foreground. They will be scaled to obtain the
correct size. (Note that both images must be specified in this case, not just one.)

Secondly, you can indicate here the icon that should be used for stand-alone games. You
can only use 32x32 icons. If you try to select another type of icon you will get awarning.

Finally you can change the unique game id. Thisid is used for storing the highscore list
and save game files. If you release a new version of your game and don't want to take
over the old highscore list, you should change this number.

22.6 Error options
Here you can set a number of options that relate to the way errors are reported.

Display error messages
When checked, error messages are shown to the player. (Except in exclusive mode.) In
the fina version of the game you might want to uncheck this option.

Write error messagesto file game_errors.log
When checked all error messages are written to afile called game_errors.log in the game
folder.

Abort on all error messages

Normally, certain errors are fatal while others can be ignored. When checking this option
all errors are considered fatal and lead to aborting the game. In the fina version of the
game you distribute you might want to check this option.

Treat uninitialized variablesas 0

One common error isto use a variable before a value is assigned to it. Sometimes thisis
difficult to avoid. When checking this option such uninitialized variables no longer report
an error but are treated as value 0. Be careful though. It might mean that you don't spot
typing mistakes anymore.

67

Chapter 23 Speed considerations

If you are making complicated games you probably want to make them run as fast as
possible. Even though Game Maker does its best to make games run fast, alot depends
on how you design your game. Also, it is rather easy to make games that use large
amounts of memory. In this chapter | will give some hints on how to make your games
faster and smaller.

First of all, look carefully at the sprites and backgrounds you use. Animated sprites take a
lot of memory and drawing lots of sprites takes a lot of time. So make your sprites as
small as possible. Remove any invisible area around it (there is a command for thisin the
sprite editor). Carefully decide which sprites to store in video memory and which ones to
only load on use. The same applies to background images. In general you want to load
them on use and, in particular when they are large, you don't want to store them in video
memory. If you have a covering background, make sure you switch off the use of a
background color.

If you use full screen mode or exclusive mode, make sure the size of the room (or
window) is never larger than the screen size. Most graphics card can efficiently scale
images up but they are very slow in scaling images down! Also, preferably draw as little
other things than sprites. Thisis dow. If you do need them, preferably draw them
immediately after each other. Finally, whenever possible, switch off the cursor. It slows
down the graphics.

Also be careful with the use of many views. For each view the room is redrawn.

Besides the graphics, there are also other aspects that influence the speed. Make sure you
have as few instances as possible. In particular, destroy instances once they are no longer
required (e.g. when they leave the room). Avoid lots of work in the step event or drawing
event of instances. Often things do not need to be checked in each step. Interpretation of
code is reasonably fast, but it is interpreted. Also, some functions and actions take a lot of
time, in particular those that have to check all instances (like for example the bounce
action).

Think about where to treat the collision events. Y ou normally have two options. Objects
that have no collison events at al are treated much faster, so preferably treat them in
those objects for which there are just a few instances.

Be careful with using large sound files. They take a lot of memory and aso compress
badly. Y ou might want to check your sounds and see whether you can sample them
down.

Findly, if you want to make a game that many people can play, make sure you test it on
small machines.

68

Chapter 24 Distributing your game

Once you have created a nice game you probably want to give it to other people to play.
You are free to distribute your games in any way you like. You can even sell them. See
the enclosed license agreement for more information.

There are basicaly three different ways in which you can distribute you games. The
easiest way isto smply give people the *.gmd file that holds the game. This does though
mean that the other person must have Game Maker. (Y ou are not allowed to distribute
Game Maker with your game but they can freely download it from the site.) Also the
other person can change the game.

The second way is to create a stand-alone version of the game. A stand-aone version is
simply one executable. This can be achieved by choosing the item Create stand-alone in
the File menu. You will be asked for the name of the executable that should contain the
game. Indicate a name, press OK and you have your stand-alone game that you can give
to anyone you like. You can set the icon for the stand-alone game in the Options form. (If
your game uses any other files you should copy them to the folder containing the stand-
alone game.) Now you should give thisfile to the other people (Y ou might want to zip it
first.)

The third way isto create an installer. A number of freeware installer programs are

available on the web. Again you first make a stand-alone version and then you use the
installer to create an installation. How to do this depends on the installer you use.

69

Chapter 25 The Game Maker Language (GML)

Asyou have read before, Game Maker contains a built-in programming language. This
programming language gives you much more flexibility and control than the standard
actions. This language we will refer to as GML (the Game maker Language). There are
three different places where you can type programs in this language. First of al, when
you define scripts. A script isaprogram in GML. Secondly, when you add a code action
to an event. In a code action you again have to provide a program in GML. Finaly,
wherever you need to specify avalue in an action, you can also use an expression in
GML. An expression, as we will see below is not a complete program, but a piece
resulting in a value.

In this chapter | will describe the basic structure of programs in GML. When you want to
use programs in GML, there are a couple of things you have to be careful about. First of
all, for al your resources (sprites, objects, sounds, etc.) you must use names that start
with aletter and only consist of letters, digits and the underscore *_’ symbol. Otherwise
you cannot refer to them from within the program. Also be careful not to rame resources
self, other, global, or all because these have special meaning in the language. Also you
should not use any of the keywords, indicated below.

25.1 A program

A program consists of ablock. A block consists of one or more statements, enclosed by
the symbols‘{’ and ‘} . Statements must be separated with a*;’ symbol. So the global
structure of every programis:

{

<st at enent >;
<st at enent >;

-

A statement can again be ablock of statements. There are a number of different types of
statements, which will be discussed below.

25.2 Variables

Like any programming language GML contains variables. Variables can store either red
values or strings. Variables do not need to be declared. There are alarge number of built-
in variables. Some are generd, like mouse_x and nouse_y that indicate the current
mouse position, while al others are local to the object instance for which we execute the
program, like x and y that indicate the current position of the instance. A variable has a
name that must start with aletter and can contain only letters, numbers, and the
underscore symbol ‘_’. (The maximal length is 64 symbols.) When you use a new
variable it islocal to the current instance and is not known in programs for other
instances (even of the same object). Y ou can though refer to variables in other instances;
see below.

70

25.3 Assignments

An assignment assigns the value of an expression to avariable. An assignment has the
form:

<vari abl e> = <expressi on>;

Rather than assigning a value to a variable one can also add it using +=, subtract it using
- =, multiply it using * = or divide it using / =. (These only work for real valued variables
and expressions, not for strings.)

25.4 Expressions

Expressions can be real numbers (e.g. 3.4), strings between single or double quotes (e.g.
“hel l o’ or“hel | 0”) or more complicated expressions. For expressions, the following
binary operators exist (in order of priority):

&&, | | : combine Boolean values (&& meaning and, | | meaning or)
<, <=,==,!=,> >=: comparisons, result in true (1) or false (0)

+, - : addition, subtraction

* ./, di v, nod: multiplication, division, integer division, and modulo

Also, the following unary operators exist:

I : not, turns true into false and false into true
- . negates the next vaue

As values you can use numbers, variables, or functions that return a value. Sub-
expressions can be placed between brackets. All operators work for real values.
Comparisons aso work for strings and + concatenates strings.

Example
Here is an example with some useless assignments.

{

TN
w

:hello wor | d';

,_.
=1 *4+ = 1l
1

W< o

23%((2+4) | sin(y));
= 'hello" + " WOI‘ld",
(X < 5) && !(X::Z || X::4);

t

oOnm X XK n X

}

25.5 Extravariables

Y ou create new variables by assigning a value to them (no need to declare them first). If
you simply use a variable name, the variable will be stored with the current object
instance only. So don’t expect to find it when dealing with another object (or another

71

instance of the same object) later. Y ou can also set and read variables in other objects by
putting the object name with a dot before the variable name.

To create global variables, that are visible to all object instances, precede them with the
word gl obal and adot. So for example you can write:

if (gl obal.doit)

/1 do somet hing
gl obal .doit = fal se

}
}

25.6 Addressing variables in other instances
As described above, you can set variables in the current instance using statements like

X = 3;

But in a number of cases you want to address variables in another instance. For example,
you might want to stop the motion of all balls, or you might want to move the main
character to a particular position, or, in the case of a collision, you might want to set the
sprite for the other instance involved. This can be achieved by preceding the variable
name with the name of an object and a dot. So for example, you can write

bal | . speed = 0;

This will change the speed of al instances of object ball. There are a number of special
"objects’.
- sel f: The current instance for which we are executing the action
ot her : The other instance involved in a collision event
al | : All instances
noone: No instance at al (sounds weird probably but it does come in handy as we
will see later on)
gl obal : Not an instance at al, but a container that stores global variables
So, for example, you can use the following kind of statements:

ot her.sprite_index = spriteb;
all.speed = 0;

gl obal . nessage = ' A good result';
gl obal . x = ball.x

Now you might wonder what the last assignment does when there are multiple balls.
WEell, the first one is taken and its x value is assigned to the global vaue.

But what if you want to set the speed of one particular bal, rather than al balls. Thisis

dightly more difficult. Each instance has a unique id. When you put instances in aroom
in the designer, this instance id is shown when you rest the mouse on the instance. These

72

are numbers larger than or equal to 100000. Such a humber you can aso use as the left-
hand side of the dot. But be careful. The dot will get interpreted as the decimal dot in the
number. To avoid this, put brackets around it. So for example, assuming the id of the ball
is 100032, you can write:

(100032) . speed = 0;

When you create an instance in the program, the call returns the id. So avalid piece of
program is

{

nnn = instance_create(100, 100, bal |);
nnn. speed = 8;

}

This creates a ball and sets its speed. Note that we assigned the instance id to a variable
and used this variable as indication in front of the dot. Thisis completely valid. Let me
try to make this more precise. A dot is actually an operator. It takes avalue as left
operand and a variable (address) as right operand, and returns the address of this
particular variable in the indicated object or instance. All the object names, and the
special objects indicated above ssimply represent values and these can be dealt with like
any value. For example, the following program is valid:

{
obj [0]
obj [1]
obj[0].alarn{4] = 12;

bal | ;

}

The last statement should be read as follows. We take the id of the first flag. For the
instance with that id we set the x coordinate to 12.

Object names, the special objects, and the instance id's can aso be used in a number of
functions.

25.7 Arrays

You can use 1- and 2-dimensional arraysin GML. Simply put the index between square
brackets for a 1-dimensional array, and the two indices with a comma between them for
2-dimensiona arrays. At the moment you use an index the array is generated. Each array
runs from index 0. So be careful with using large indices because memory for alarge
array will be reserved. Never use negative indices. The system puts a limit of 32000 on
each index and 1000000 on the total size. So for example you can write the following:

{

a[0] = 1;

i = 1;

while (i < 10) { a[i] = 2*a[i-1]; i += 1;}
b[4,6] = 32,

73

25.8 If statement
An if statement has the form

i f (<expression>) <statenent>

or
i f (<expression>) <statenment> el se <statenent>

The statement can also be a block. The expression will be evaluated. If the (rounded)
value is <=0 (fal se) the statement after else is executed, otherwise (true) the other
statement is executed. It is agood habit to always put curly brackets around the
statements in the if statement. So best use

i f (<expression>)

{
<st at enent >

}

el se

{

<st at enent >

}

Example
The following program moves the object toward the middle of the screen.

if (x<200) {x += 4} else {x -= 4};
}

25.9 Repeat statement
A repeat statement has the form

repeat (<expression>) <statenment>

The statement is repeated the number of times indicated by the rounded value of the
expression.

Example
The following program creates five balls at random positions.

{
repeat (5) instance_create(random 400), randon(400), ball);

}

25.10 While statement
A while statement has the form

whi | e (<expression>) <statenment>

74

Aslong as the expression is true, the statement (which can also be a block) is executed.
Be careful with your while loops. Y ou can easily make them loop forever, in which case
your game will hang and not react to any user input anymore.

Example
The following program tries to place the current object at a free position (this is about the
same as the action to move an object to arandom position).

{
while (!place_free(x,y))
{
X
y
}
}

random(room wi dt h) ;
random(room hei ght) ;

25.11 For statement
A for statement has the form

for (<statement1> ; <expression> ; <statenent2>) <statenment3>

This works as follows. First statementl is executed. Then the expression is evaluated. If it
istrue, statement 3 is executed; then statement 2 and then the expression is evaluated
again. This continues until the expression is false.

This may sound complicated. Y ou should interpret this as follows. The first statement
initiaizes the for-1oop. The expression tests whether the loop should be ended.
Statement? is the step statement that goes to the next loop evaluation.

The most common use is to have a counter run through some range.

Example
The following program initializes an array of length 10 with the values 1-10.

{
for (i=0; i<9; i+=1) list[i] = 1i+1;
}

25.12 Exit statement
The exit statement has the form

exit

It smply ends the execution of this program. (It does not end the execution of the game!
For this you need the function game_end() ; seebelow.)

75

25.13 Functions

A function has the form of a function name, followed by zero or more arguments between
brackets, separated by commas.

<function>(<argl>, <arg2>,.)

There are two types of functions. First of all, there is a huge collection of built-in
functions, to control all aspects of your game. Secondly, any script you define in your
game can be used as a function.

Note that for a function without arguments you still need to use the brackets. Some
functions return values and can be used in expressions. Others simply execute commands.

25.14 Scripts

When you create a script, you want to access the arguments passed to it (either when
using the script action, or when calling the script as a function from a program (or from
another, or even the same script). These arguments are stored in the variables

argunment 0, ar gunent 1, ..., ar gunent 9. So there can be at most 10 arguments.
(Note that when calling the script from an action, only the first 3 arguments can be
specified.)

Scripts can also return a value, such that they can be used in expressions. For this end you
use the return statement:

return <expression>
Execution of the script ends at the return statement!

Example
Here is the definition for alittle script that computes the square of the argument:

{
}

return (argunent O*ar gunment 0) ;

To call ascript from within a piece of code, just act the same way as when calling
functions. That is, write the script name with the argument values in parentheses.

25.15 With constructions

As indicated before, it is possible to read and change the value of variables in other
instances. But in a number of cases you want to do a lot more with other instances. For
example, imagine that you want to move al balls 8 pixels down. Y ou might think that
thisis achieved by the following piece of code

ball.y = ball.y + 8;

76

But this is not correct. The right side of the assignment gets the value of the y-coordinate
of the first ball and adds 8 to it. Next this new value is set as y-coordinate of all balls. So
the result isthat al balls get the same y-coordinate. The statement

ball.y += 8;

will have exactly the same effect because it is ssimply an abbreviation of the first
statement. So how do we achieve this? For this purpose there is the with statement. Its
globa formis

with (<expression>) <statenent>

<expression> indicates one or more instances. For this you can use an instance id, the
name of an object (to indicate all instances of this object) or one of the special objects
(al, sdf, other, noone). <statement> is now executed for each of the indicated instances,
asif that instance is the current (self) instance. So, to move all balls 8 pixels down, you
can type.

with (ball) y += 8;

If you want to execute multiple statements, put curly brackets around them. So for
example, to move al balls to a random position, you can use

with (ball)
{

X
y

random(room wi dt h) ;
random(room hei ght);

}

Note that, within the statement(s), the indicated instance has become the self instance.
Within the statements the original self instance has become the other instance. So for
example, to move al balls to the position of the current instance, you can type

with (ball)

{

ot her. x;
ot her.y;

X
y
}

Use of the with statement is extremely powerful. Let me give afew more examples. To
destroy al balls you type

with (ball) instance_destroy();
If abomb explodes and you want to destroy all instances close by you can use
with (all)
if (distance_to_object(other) < 50) instance_destroy();

}

77

25.16 Comment

Y ou can add comment to your programs. Everything on a line after // is not read. It is
used internally to indicate an end of line.

25.17 Pascal style

The interpreter is actually pretty relaxed. You can also use programs that look a lot like
Pascal. Y ou can use begin and end to delimit blocks, := for the assignment, and even add
the word then in an if statement or do in awhile loop. For example, the following
program is also valid:

begin
X = 10;
whi |l e x>0 do
begin
if x=5 then x:=x-5 else x:=x-1;
end;
end;

25.18 Functions and variables in GML

GML contains alarge number of built-in functions and variables. With these you can
control any part of the game. For all actions there are corresponding functions so you
actually don’'t need to use any actions if you prefer using code. But there are many more
functions and variables that control aspects of the game that cannot be used with actions
only. So if you want to make advanced games you are strongly advised to read through
the following chapters to get an overview of all that is possible. Please note that these
variables and functions can aso be used when providing values for actions. So even if
you don’t plan on using code or writing scripts, you will still benefit from this
information.

The following convention is used below. Variable names marked with a* are read-only,

that is, their value cannot be changed. Variable names with [0..n] after them are arrays.
The range of possible indices is given.

78

Chapter 26 Computing things

Game Maker contains alarge number of functions to compute certain things. Hereis a
complete list.

26.1 Constants
The following constants exist:

t rue Equa to 1.
fal se Equal toO.
pi Equal to 3.1415...

26.2 Real-values functions
The following functions exist that deal with real numbers.

r andon(x) Returns arandom real number between 0 and x. The number is
always smaler than x.

abs(x) Returns the absolute value of x.

si gn(x) Returnsthesignof x (-1 or 1).

round(x) Returns x rounded to the nearest integer.

f1 oor (x) Returnsthe floor of x, that is, x rounded down to an integer.
cei | (x) Returnsthe ceiling of x, that is, x rounded up to an integer.

f rac(x) Returnsthe fractional part of x, that is, the part behind the decimal dot.
sqgrt (x) Returns the square root of x. x must be non-negative.

sqr (x) Returns x*x.

power (X, n) Returnsx to the power n.

exp(x) Returns e to the power Xx.

I n(x) Returns the natura logarithm of x.

| 0g2(x) Returnsthe log base 2 of x.

| 0g10(x) Returns the log base 10 of x.

I ogn(n, x) Returnsthe log base n of x.

si n(x) Returnsthe sine of x (x in radians).

cos(x) Returnsthe cosine of x (x in radians).

t an(x) Returnsthe tangent of x (x in radians).

ar csi n(x) Returnstheinverse sine of x.

ar ccos(x) Returns the inverse cosine of x.

ar ct an(x) Returns the inverse tangent of x

degt or ad(x) Converts degrees to radians.

r adt odeg(x) Converts radians to degrees.

m n(x, y) Returnsthe minimum of x andy.

max(x, y) Returnsthe maximum of x andy.

m n3(x, Y, z) Returnsthe minimum of x, y and z.

max3(x, Yy, z) Returnsthe maximum of x, y and z

mean(x, y) Returnsthe average of x andy.

79

poi nt _di st ance(x1, y1, x2, y2) Returnsthe distance between point (x1,y1)
and point (x2,y2).

poi nt _direction(x1,yl, x2,y2) Returnsthe direction from point (x1,y1)
toward point (x2,y2) in degrees.

i s_real (x) Returrs whether x isareal value (as opposed to a string).

i s_string(x) Returnswhether x isastring (as opposed to areal value).

26.3 String handling functions
The following functions deal with characters and string.

chr (val) Returns a string containing the character with asci code val.
ord(str) Returnsthe asci code of the first character in str.

real (str) Turnsstrinto area number. str can contain a minus sign, a decimal
dot and even an exponentia part.

string(val) Turnstherea vaue into astring using a standard format (no
decimal places when it is an integer, and two decimal places otherwise).
string_format(val,tot,dec) Turnsva into astring usng your own
format: tot indicates the total number of places and dec indicated the number of
decimal places.

string_l engt h(str) Returns the number of charactersin the string.
string_pos(substr, str) Returnsthe position of substr in str (0=no
occurrence).

string_copy(str,index, count) Returnsasubstring of str, starting at
position index, and of length count.

string_del ete(str,index, count) Returnsacopy of str with the part
removed that starts at position index and has length count.
string_insert(substr, str,index) Returnsacopy of str with substr added
at position index.

string_replace(str, substr, newstr) Returrsacopy of str with the first
occurrence of substr replaced by newstr.

string_replace_all (str,substr, newstr) Returnsacopy of str with all
occurrences of substr replaced by newstr.

string_count (substr, str) Returnsthe number of occurrences of substr in
str.

string_l ower (str) Returns alowercase copy of str.

string_upper (str) Returns an uppercase copy of str.

string_repeat (str, count) Returnsastring consisting of count copies of str.
string_ letters(str) Returnsastring that only contains the lettersin dr.
string_digits(str) Returnsastring that only contains the digitsin str.
string_lettersdigits(str) Returnsastring that contains the letters and
digitsin str.

80

Chapter 27 GML: Game play

There are alarge number of variables and functions that you can use to define the game
play. These in particular influence the movement and creation of instances, the timing,
and the handling of events.

27.1 Moving around

Obviously, an important aspect of games is the moving around of object instances. Each
instance has two built-invariables x and y that indicate the position of the instance. (To
be precise, they indicate the place where the origin of the sprite is placed. Position (0,0) is
the top- left corner of the room. Y ou can change the position of the instance by changing
its x and y variables. If you want the object to make complicated motions this is the way
to go. You typically put this code in the step event for the object.

If the object moves with constant speed and direction, there is an easier way to do this.
Each object instance has a horizontal speed (hspeed) and a vertical speed (vspeed).
Both are indicated in pixels per step. A positive horizontal speed means a motion to the
right, a negative horizontal speed mean a motion to the left. Positive vertical speed is
downwards and negative vertical speed is upwards. So you have to set these variables
only once (for example in the creating event) to give the object instance a constant
motion.

There is quit a different way for specifying motion, using a direction (in degr ees 0-359),
and a speed (should be non-negative). Y ou can set and read these variables to specify an
arbitrary motion. (Internaly this is changed into values for hspeed and vspeed.) Also
there is the friction and the gravity and gravity direction. Finally, there is the function
not i on_add(dir, speed) to add amotion to the current one.

To summarize, each instance has the following variables, and functions:

x Its x-pogition.

y Its y-position.

Xpr evi ous Its previous x-position.

ypr evi ous Its previous y-position.

xst art Itsstarting x-position in the room.

ystart Itsstarting y-position in the room.

hspeed Horizontal component of the speed.

vspeed Vertical component of the speed.

di recti on Its current direction (0-360, counter-clockwise, O = to the right).
speed Itscurrent speed (pixels per step).

friction Current friction (pixels per step).

gravi ty Current amount of gravity (pixels per step).

gravi ty_direction Direction of gravity (270 is downwards).

not i on_set (di r, speed) Setsthe motion with the given speed in direction dir.

81

not i on_add(di r, speed) Addsthe motion to the current motion (as a vector
addition).

pat h_i ndex Index of the current path the instance follows. Set to —1 to have no
path.

pat h_posi ti on Position in the current path. O is the beginning of the path. 1 is
the end of the path.

pat h_ori ent at i on Orientation (counter-clockwise) into which the path is
performed. O is the normal orientation of the path.

pat h_scal e Scale of the path. Increase to make the path larger. 1 is the default
value.

There are a large number of functions available that help you in defining your motions:

pl ace_free(x,y) Returnswhether the instance placed at position(x,y) is
collision-free. Thisistypicaly used as a check before actually moving to the new
position.

pl ace_enpt y(x, y) Returnswhether the instance placed at position (x,y) meets
nobody. So this function takes also non-solid instances into account.

pl ace_neeti ng(x, y, obj) Returnswhether the instance placed at position
(x,y) meets obj. obj can be an object in which case the function returns true is
some instance of that object is met. It can aso be an instance id, the special word
al | meaning an instance of any object, or the special word ot her .

pl ace_snapped(hsnap, vsnap) Returnswhether the instance is aligned with
the snapping values.

move_r andon{ hsnap, vsnap) Move the instance to a free random, snapped
position, like the corresponding action.

nmove_snap(hsnap, vsnap) Snap the instance, like the corresponding action.
nove_t owar ds_poi nt (x, y, sp) Moves the instances with speed sp toward
position (X,y).

nmove_bounce_sol i d(adv) Bounce against solid instances, like the
corresponding action. adv indicates whether to use advance bounce, that also
takes dlanted walls into account.

nmove_bounce_al | (adv) Bounce against all instances, instead of just the solid
ones.

nove_cont act (di r) Move theinstance in the direction until a contact position
is reached. If there is no collision at the current position, the instance is placed
just before a callision occurs. If there aready is a collision, the instance is moved
to the first position where there is no collision anymore.

di stance_t o_poi nt (x, y) Returnsthe distance of the bounding box of the
current instance to (X,y).

di stance_t o_obj ect (obj) Returns the distance of the instance to the nearest
instance of object obj.

82

posi tion_enpty(x,y) Returnswhether thereis nothing at position (x,y).
posi tion_neeting(x,y, obj) Returnswhether at position (x,y) thereis an
instance obj. obj can be an object, an instance id, or the keywords sel f , ot her,
orall.

27.2 Instances

In the game, the basic units are the instances of the different objects. During game play
you can change a number of aspects of these instances. Also you can create new instances
and destroy instances. Besides the movement related variables discussed above and the
drawing related variables discussed below, each instance has the following variables:

obj ect _i ndex* Index of the object thisis an instance of. Cannot be changed.

i d* The unique identifier for the instance (>= 100000). (Note that when defining
rooms the id of the instance under the mouse is aways indicated.)

mask_i ndex Index of the sprite used as mask for collisions. Give this a value of
-1 to make it the same as the sprite_index.

sol i d Whether the instance is solid. This can be changed during the game.

per si st ent Whether the instance is persistent and will reappear when moving
to another room. Y ou often want to switch persistence off at certain moments.
(For example if you go back to the first room.)

There is one problem when dealing with instances. It is not so easy to identify individual
instances. They don't have a name. When there is only one instance of a particular object
you can use the object name but otherwise you need to get the id of the instance. Thisisa
unique identifier for the instance. you can use it in with statements and as object
identifier (using the dot construction described in section 25.6). Fortunately there are a
number of variables and routines that help you locate instance id's.

i nst ance_count* Number of instances that currently exist in the room.
i nstance_i d[0..n-1]* Theid of the particular instance. Here n is the number
of instance.

Let me give an example. Assume each unit in your game has a particular health and you
want to locate the strongest one, you could use the following code:

{
maxid = -1;
maxheal th = O;
for (i=0; i<instance_count; i+=1)
{
ii = instance_id[i];
f (iii.object_index == unit)

i
i
{
if (iii.health > nmaxhealth)
{maxid = iii; maxhealth = iii.health;}

83

After the loop maxid will contain the id of the unit with largest health. (Don't destroy
instances during such a loop because they will automatically be removed from the array
and as a result you will start skipping instances.)

i nstance_fi nd(obj, n) Returnstheid of the (n+1)'th instance of type obj. obj
can be an object or the keyword all. If it does not exist, the special object noone
isreturned.

i nst ance_exi st s(obj) Returns whether an instance of type obj exists. obj
can be an object, an instance id, or the keyword all.

i nst ance_nunber (obj) Returnsthe number of instances of type obj. obj can
be an object or the keyword all.

i nst ance_posi tion(x,y,obj) Returnstheid of the instance of type obj at
position (x,y). When multiple instances are at that position the first is returned.
obj can be an object or the keyword al. If it does not exist, the specia object
noone isreturned.

i nst ance_near est (X, Yy, obj) Returnstheid of the instance of type obj
nearest to (X,y). obj can be an object or the keyword all.

i nstance_furthest (x,y, obj) Returnstheid of the instance of type obj
furthest away from (x,y). obj can be an object or the keyword all.

i nst ance_pl ace(x, y, obj) Returnstheid of the instance of type obj met
when the current instance is placed at position (x,y). obj can be an object or the
keyword al. If it does not exist, the special object noone is returned.

The following functions can be used for creating and destroying instances.

i nst ance_creat e(x, y, obj) Creates an instance of obj at position (x,y). The
function returns the id of the new instance.

i nst ance_copy(per f or mrevent) Createsacopy of the current instance. The
argument indicates whether the creation event must be executed for the copy. The
function returns the id of the new copy.

i nst ance_dest roy() Destroys the current instance.

i nst ance_change(obj , per f) Changes the instance into obj. perf indicates
whether to perform the destroy and creation events.

position_destroy(x,y) Destroy al instances whose sprite contains position
(x,y).

posi ti on_change(x, y, obj, perf) Change all instances at (x,y) into obj.
perf indicates whether to perform the destroy and creation events.

27.3 Timing

Good games required careful timing of things happening. Fortunately Game Maker does
most of the timing for you. It makes sure things happen at a constant rate. Thisrateis
defined when defining the rooms. But you can change it using the global variable
room speed. So for example, you can slowly increase the speed of the game, making it
more difficult, by adding a very small amount (like 0.001) to r oom speed in every step.

If your machine is dow the game speed might not be achieved. This can be checked
using the variable f ps that constantly monitors the actual number of frames per second.
Finally, for some advance timing you can use the variable cur r ent _t i ne that gives the
number of milliseconds since the computer was started. Here is the total collection of
variables available (only the first one can be changed):

room speed Speed of the game in the current room (in steps per second).

f ps* Number of frames that are actually drawn per second.

current _time* Number of milliseconds that have passed since the system was
started.

current _year* The current year.

current _nont h* Thecurrent month.

cur rent _day* The current day.

current _weekday* The current day of the week (1=sunday, ..., 7=saturday).
current _hour* The current hour.

current _m nut e* The current minute.

current _second* The current second.

Sometimes you might want to stop the game for a short while. For this, use the sleep
function.

sl eep(nunb) Slegps numb milliseconds.

Finaly, as you should know, every instance has 8 different alarm clocks that you can set.
To change the values (or get the values) of the different alarm clocks use the following
variable:

al arnf 0..7] Vaueof theindicated alarm clock. (Note that alarm clocks only
get updated when the alarm event for the object contains actions!)

274 Rooms and score

Games work in rooms. Each room has an index that is indicated by the name of the room.
The current room is stored in variable room. Y ou cannot assume that rooms are
numbered in a consecutive order. So never add or subtract a number from the room
variable. Instead use the functions and variables indicated below. So atypical piece of
code you will useis:

{

if (room!= roomlast)

{

room got o_next ();

}

el se

game_end();

}

85

}
The following variables and functions exist that deal with rooms.

r oomlndex of the current room; can be changed to go to a different room, but you
better use the routines below.

room first* Index of the first room in the game.

room | ast * Index of the last room in the game.

room got o(nunb) Goto the room with index numb.

room got o_pr evi ous() Go to the previous room.

room got o_next () Go to the next room.

room restart () Restart the current room.

room pr evi ous(nunb) Return the index of the room before numb (-1 = none)
but don't go there.

room next (nunb) Return the index of the room after numb (-1 = none).
gane_end() End the game.

gane_restart () Redtart the game.

Rooms have a number of additional properties:

room wi dt h* Width of the room in pixels.

room hei ght * Height of the room in pixels.

room capt i on Caption string for the room that is displayed in the caption of the
window.

room per si st ent Whether the current room is persistent.

Many games offer the player the possibility to save the game and load a saved game. In
Game Maker this happens automatically when the player press <F5> for saving and <F6>
for loading. Y ou can aso save and load games from within a piece of code (note that
loading only takes place at the end of the current step).

game_save(string) Savethe game to the file with name string.
gane_| oad(string) Load the game from the file with name string.

Another important aspect of many games is the score and the number of lives. Game
Maker keeps track of the score in agloba variable scor e and the number of livesin a
global variable | i ves. Both are normally is shown in the window caption. Y ou can
change the score by simply changing the value of this variable. The same for lives. If
livesislarger than O and becomes smaller than or equal to O the no-more-lives event is
performed for all instances. If you don’'t want to show the score and lives in the caption,
st the variable show_scor e to false. (You can also change this in the options form.)
For more complicated games you better display the score yourself.

scor e The current score.
| i ves Number of lives.

86

show_scor e Whether to show the score (and lives).

There is aso a built-in mechanism to keep track of a highscore list. It can contain up to
ten names. For more information, see Chapter 31.

27.5 Generating events

Asyou know, Game Maker is completely event driven. All actions happen as the result
of events. There are a number of different events. Creation and destroy events happen
when an instance is created or destroyed. In each step, the system first handles the alarm
events. Next it handles keyboard and mouse events and next the step event. After thisthe
instances are set to their new positions after which the collision event is handled. Finally
the draw event is used to draw the instances (note that when there are multiple views the
draw event is called multiple times in each step). You can also apply an event to the
current instance from within a piece of code. The following functions exist:

event _per f or n{t ype, nunb) Performs event numb of type type to the current
instance. The following event types can be indicated:

ev_create

ev_destroy

ev_step

ev_al arm

ev_keyboard

ev_nouse

ev_collision

ev_ot her

ev_draw

ev_keypress

ev_keyr el ease
When there are multiple events of the given type, numb can be used to specify the
precise event. For the alarm event numb can range from 0 to 7. For the keyboard
event you have to use the keycode for the key. For mouse events you can use the
following constants:

ev_| eft_button

ev_right _button

ev_m ddl e_button

ev_no_button

ev_|eft _press

ev_right_press

ev_m ddl e_press

ev_|left _rel ease

ev_right_rel ease

ev_mi ddl e_rel ease
For the collision event you give the index of the other object. Finally, for the other
event you can use the following constants:

ev_out si de

ev_boundary

ev_gane_start

ev_gane_end

ev_room start

87

ev_room end
ev_no_nore_lives
ev_ani mati on_end

For the step evert you give the index can use the following constants:
ev_step_norma

ev_step_begin

ev_step_end
event _perform obj ect (obj, type, nunb) This functions works the same as
the function above except that this time you can specify events in another object.
Note that the actions in these events are applied to the current instance, not to
instances of the given object..
event _user (nunb) In the other events you can also define 8 user events. These
are only performed if you call this function numb must lie in the range O to 7.
event _i nheri t ed() Performs the inherited event. This only works if the
instance has a parent object.

You can get information about the current event being executed using the following read-
only variables:
event _t ype* Type of the current event begin executed.
event _nunber * Number of the current event begin executed.
event _obj ect * The object index for which the current event is being executed.
event _act i on* Theindex of the action that is currently being executed (O is the
first in the event, etc.).

27.6 Miscellaneous variables and functions

Here are a large number of functions that can be used to obtain information about the
different resources in the game. Note that there are no such functions for the rooms
because the rooms change during the game play. As indicated above you can get
information about the current room.

sprite_exists(ind) Returnswhether a sprite with the given index exists.
sprite_get_nane(ind) Returnsthe name of the sprite with the given index.
sprite_get _nunber (i nd) Returnsthe number of subimages of the sprite with
the given index.

sprite_get_wi dt h(ind) Returnsthe width of the sprite with the given index.
sprite_get height (i nd) Returnsthe height of the sprite with the given
index.

sprite_get_transparent (i nd) Returnswhether the sprite with the given
index is transparent.

sprite_get_xoffset(ind) Returnsthe xoffset of the sprite with the given
index.

sprite_get_yoffset(ind) Returnsthe y-offset of the sprite with the given
index.

sprite_get_bbox_| eft(ind) Returnstheleft sideof the bounding box of the
sprite with the given index.

88

sprite_get bbox_right (i nd) Returnstheright side of the bounding box of
the sprite with the given index.

sprite_get_bbox_top(ind) Returnsthetop side of the bounding box of the
sprite with the given index.

sprite_get_bbox_botton{ind) Returnsthe bottom side of the bounding box
of the sprite with the given index.

sprite_get_precise(ind) Returnswhether the sprite with the given index
uses precise collision checking.

sprite_get_videomen(i nd) Returnswhether the sprite with the given index
uses video memory.

sprite_get_| oadonuse(i nd) Returnswhether the sprite with the given index
is loaded only on use.

sound_exi st s(i nd) Returns whether a sound with the given index exists.
sound_get _nane(i nd) Returnsthe name of the sound with the given index.
sound_get _ki nd(i nd) Returnsthe kind of the sound with the given index
(O=wave, 1=midi, 2=mp3, 10=unknown).

sound_get _buffers(ind) Returnsthe number of buffers of the sound with the
given index.

sound_get _effect (i nd) Returnswhether the sound with the given index
allows for special effects.

sound_get _| oadonuse(i nd) Returnswhether the sound with the given index
is loaded only on use.

background_exi st s(i nd) Returnswhether a background with the given index
exists.

background_get name(i nd) Returnsthe name of the background with the
given index

background_get wi dt h(i nd) Returnsthe width of the background with the
given index.

background_get _hei ght (i nd) Returnsthe height of the background with the
given index.

background_get _transparent (i nd) Returnswhether the background with
the given index is transparent.

background_get vi deonen(i nd) Returns whether the background with the
given index uses video memory.

background_get | oadonuse(i nd) Returnswhether the background with the
given index is loaded only on use.

pat h_exi st s(i nd) Returnswhether a path with the given index exists.

pat h_get nane(i nd) Returnsthe name of the path with the given index.
pat h_get | engt h(i nd) Returnsthe length of the path with the given index.
pat h_get ki nd(i nd) Returnsthe kind of connections of the path with the
given index (O=straight, 1=smooth).

89

pat h_get end(ind) Returnswhat happens at the end of the path with the given
index (O=stop, 1=jump to start, 2=connect to start, 3=reverse, 4=continue).

scri pt_exi sts(ind) Returnswhether a script with the given index exists.
scri pt_get _nane(i nd) Returnsthe name of the script with the given index.
script_get _text(ind) Returnsthe text string of the script with the given
index.

obj ect _exi sts(i nd) Returns whether an object with the given index exists.
obj ect _get _nane(i nd) Returns the name of the object with the given index.
obj ect _get _sprite(ind) Returnstheindex of the default sprite of the object
with the given index.

obj ect _get _sol i d(i nd) Returnswhether the object with the given index is
default solid.

obj ect _get vi si bl e(ind) Returnswhether the object with the given index is
default visible.

obj ect _get _dept h(i nd) Returnsthe depth of the object with the given index.
obj ect _get persi stent (ind) Returnswhether the object with the given
index is persistent.

obj ect _get _nmask(i nd) Returnstheindex of the mask of the object with the
givenindex (-1 if is has no special mask).

obj ect _get _parent (i nd) Returnsindex of the parent object of object ind (-1
if it hes no parent).

obj ect _i s_ancestor (i ndl, ind2) Returnswhether object ind2 is an ancestor
of object indl.

room exi st s(i nd) Returns whether a room with the given index exists.
room get _nane(i nd) Returns the name of the room with the given index

Here are two variables that deal with errors.

error_occurred Indicates whether an error has occurred
error_l ast String indicating the last error message

90

Chapter 28 GML: User interaction

There is no game without interaction with the user. The standard way of doing thisin
Game Maker isto put actions in mouse or keyboard events. But sometimes you need
more control. From within a piece of code you can check whether certain keys on the
keyboard are pressed and you can check for the position of the mouse and whether its
buttons are pressed. Normally you check these aspects in the step event of some
controller object and take action accordingly. The following variables and functions exist:

mouse_x* X-coordinate of the mouse. Cannot be changed.

nouse_y* Y-coordinate of the mouse. Cannot be changed.

mouse_but t on Currently pressed mouse button. As value use mb_none,
mb_any, mb_left, mb_middle, or mb_right.

keyboard_| ast key Keycode of last key pressed. See below for keycode
constants. You can changeit, e.g. set it to O if you handled it.

keyboar d_key Keycode of current key pressed (see below; O if none).
keyboar d_| ast char Last character pressed (as string).

keyboar d_st ri ng String containing the last at most 80 characters typed. This
string will only contain the printable characters typed. It also correctly responds to
pressing the backspace key by erasing the last character.

To check whether a particular key or mouse button is pressed you can use the following
functions. Thisisin particular useful when multiple keys are pressed simultaneoudly.

keyboar d_check(key) Returnswhether the key with the particular keycode is
pressed.

keyboar d_check_di rect (key) Returnswhether the key with the particular
keycode is pressed by checking the hardware directly. The result is independent
of which application has focus. It alows for a few more checks. In particular you
can use keycodes vk_Ishift, vk_Icontrol, vk_lalt, vk_rshift, vk_rcontrol and

vk _ralt to check whether the left or right shift, control or alt key is pressed. (This
does not work under windows 95!).

mouse_check_but t on(nunb) Returns whether the mouse button is pressed
(use as values mb_none, mb_left, mb_middle, or mb_right).

The following constants for virtual keycodes exist:

vk_nokey keycode representing that no key is pressed
vk_anykey keycode representing that any key is pressed
vk _| eft keycode for left arrow key

vk_ri ght keycode for right arrow key

vk _up keycode for up arrow key

vk_down keycode for down arrow key

vk_enter enter key

vk_escape escape key

91

vk_space spacekey

vk_shi ft shift key

vk_cont rol control key

vk_al t altkey

vk_backspace backspace key

vk _tab tabkey

vk_home home key

vk_end end key

vk_del et e delete key

vk_i nsert insert key

vk_pageup pageup key

vk_pagedown pagedown key

vk_pause pause/break key

vk_print screen printscreen/sysrq key
vk_f1...vk_f12 keycodesfor the function keys F1 to F12
vk_nunpadO ... vk_nunmpad9 number keys on the numeric keypad
vk_mul ti ply multiply key on the numeric keypad
vk_di vi de divide key on the numeric keypad
vk_add add key on the numeric keypad

vk_subt ract subtract key on the numeric keypad
vk_deci mal decimal dot keys on the numeric keypad

For the letter keys use for exampleor d(' A") . (The capita letters.) The following
constants can only be used in keyboar d_check_di rect:

vk_Ishift left shift key

vk_Il control left control key
vk_lalt leftaltkey

vk_rshi ft right shift key
vk_rcontrol right control key
vk_ralt rightalt key

They do not work on older version of Windows!

For example, assume you have an object that the user can control with the arrow keys
you can put the following piece of code in the step event of the object:

{

}

i f (keyboard check(vk_left))
i f (keyboard_check(vk_right))
i f (keyboard_check(vk_up))

i f (keyboard_check(vk_down))

< < X X
+| +|
mona
RREAR

Of courseitisalot easier to smply put this in the keyboard events.

92

As you probably know, in the game options you can indicate whether keyboard and
mouse event should be continuous or only once when the user presses the button or key.
These functions are obsolete now. Y ou can set and change this within code using the
following variables:

keyboar d_cont i nuous Indicated whether keyboard events should be
continuous (1) or not (0).

nmouse_cont i nuous Indicated whether mouse events should be continuous (1)
or not (0).

There are three additional functions related to interaction.

keyboard_cl ear (key) Clearsthe state of the key. This means that it will no
longer generate keyboard events until it starts repeating.

nmouse_cl ear (but t on) Clears the state of the mouse button. This means that it
will no longer generate mouse events until the player releases it and presses it
again.

i o_cl ear () Clearsal keyboard and mouse states.

i o_handl e() Handle user io, updating keyboard and mouse status.
keyboard_wai t () Waitstill the user presses a key on the keyboard.

28.1 Joystick support

Though this might not be obvious, Game Maker actually has joystick support.
Movements of the joystick create keyboard events <NUMPAD>1 to <NUMPAD>9 asin
the numeric keypad. The four buttons generate keyboard events for the letters A, B, C
and D. So you can react on these. Please realize that you don’t get this information with
thekeyboar d_check() function because that function checks the keyboard. Instead
thereis awhole set of functions to deal with joysticks. Game Maker supports up to two
joysticks. So all of these functions take ajoystick id as argument.

j oysti ck_exi sts(id) Returnswhether joystick id (1 or 2) exists.
joystick_direction(id) Returnsthe keycode (vk_numpadl to
vk_numpad9) corresponding to the direction of joystick id (1 or 2).

j oystick_check_button(id, nunb) Returns whether the joystick button is
pressed (numb in the range 1-4).

j oystick_xpos(id) Returnsthe position (-1 to 1) of the x-axis of joystick id.
j oystick_ypos(id) Returnsthe joysticks y-position.

j oystick_zpos(id) Returnsthe joysticks zposition (if it has a zaxis).

93

Chapter 29 GML: Game graphics

An important part of a game is the graphics. Game Maker normally takes care of most of
this and for ssimple games there is need to worry about it. But sometimes you want to take
more control. For some aspects there are actions but from code you can control many
more aspects. This chapter describes al variables and functions available for this and
gives some more information about what is really happening.

29.1 Window and cursor

Default the game runs inside a centered window. The player can change this to full screen
by pressing the <F4> key unless this was disabled. Y ou can aso do this from within the
program using the following variable:

full _screen Thisvariable is true when in full-screen mode. Y ou can change
the mode by setting this variable to true or false.

Note that in full screen mode the caption and the score are shown on the screen. (This can
be avoided using the game options.) In full screen mode the image is either centered or
scaled. You can control this using the following variable:

scal e_wi ndow This variable indicates the percentage of scaling in windowed

mode. 100 indicates no scaling.
scal e_ful | Thisvariable indicates the percentage of scaling in fullscreen mode.
100 indicates no scaling. 0 indicates the maximum scaling possible.

Scaled mode can be slow on machines with a slow processor or graphics card. Default
each game runs with avisible cursor. For lots of games you don’t want this. To remove
the cursor, use the variable:

show_cur sor If set to false the cursor is made invisible inside the playing area,
otherwise it is made visible.

By the way, note that it is very easy to make your own cursor object. Just create an object
with a negative depth that, in its step event, follows the mouse position.

To find out the resolution of the monitor you can use the following two read-only
variables:

nmoni t or _wi dt h The width of the monitor, in pixels.
nmoni t or _hei ght The height of the monitor, in pixels.

29.2 Sprites and images

Each object has a sprite associated with it. Thisis either a single image or it consists of
multiple image. For each instance of the object the program draws the corresponding
image on the screen, with its origin (as defined in the sprite properties) at the position

94

(x,y) of the instance. When there are multiple images, it cycles through the images to get
an animation effect. There are a number of variables that affect the way the image is
drawn. These can be used to change the effects. Each instance has the following
variables:

vi si bl e If visbleistrue (1) the image is drawn, otherwise it is not drawn.
Invisible instances are still active and create collision events; you only don’'t see
them. Setting the visibility to false is useful for e.g. controller objects (make them
non-solid to avoid collision events) or hidden switches.

sprite_index Thisistheindex of the current sprite for the instance. Y ou can
change it to give the instance a different sprite. As value you can use the names of
the different sprites you defined. Changing the sprite does not change the index of
the currently visible subimage.

sprite_w dt h* Indicatesthe width of the sprite. This value cannot be changed
but you might want to use it.

sprite_hei ght* Indicates the height of the sprite. This value cannot be
changed but you might want to use it.

sprite_xof fset* Indicatesthe horizontal offset of the sprite as defined in the
sprite properties. This value cannot be changed but you might want to use it.
sprite_yof fset* Indicatesthe vertica offset of the sprite as defined in the
sprite properties. This value cannot be changed but you might want to use it.

i mge_nunber* The number of subimages for the current sprite for the instance
(cannot be changed).

i mage_i ndex When the image has multiple subimages the program cycles
through them. This variable indicates the currently drawn subimage (they are
numbered starting from 0). Y ou can change the current image by changing this
variable. The program will continue cycling, starting at this new index.

i mage_si ngl e Sometimes you want a particular subimage to be visible and
don't want the program to cycle through all of them. This can be achieved by
setting this variable to the index of the subimage you want to see (first subimage
has index 0). Give it avaue —1 to cycle through the subimages. This is useful
when an object has multiple appearances. For example, assume you have an
object that can rotate and you create a sprite that has subimages for a number of
orientations (counter-clockwise). Then, in the step event of the object you can set

{
i mge_single = direction * imge_nunber/ 360;

}

i mge_speed The speed with which we cycle through the subimages. A value of
1 indicates that each step we get the next image. Smaller values will switch
subimages slower, drawing each subimage multiple times. Larger values will skip
subimages to make the motion faster.

dept h Normally images are drawn in the order in which the instances are created.
Y ou can change this by setting the image depth. The default value is O, unless you
set it to a different value in the object properties. The higher the value the further

95

the instance is away. (You can also use negative values.) Instances with higher
depth will lie behind instances with a lower depth. Setting the depth will
guarantee that the instances are drawn in the order you want (e.g. the plane in
front of the cloud). Background instances should have a high (positive) depth, and
foreground instances should have alow (negative) depth.

i mge_scal e A scae factor to make larger or smaller images. A value of 1
indicates the normal size. Changing the scale also changes the values for the
image width and height and influences collision events as you might expect.
Resdlize that scaled images (in particular when you make them smaller) take more
time to draw. Changing the scale can be used to get a 3-D effect.

i mage_al pha Transparency (alpha) value to use when drawing theimage. A
value of 1 isthe normal setting; avalue of 0 is completely transparent. Use with
care. Drawing partially transparent images takes alot of time and will slow down
the game.

bbox_| ef t * Left side of the bounding box used of the image of the instance
(taking scaling into account).

bbox_ri ght * Right side of the bounding box of the instance image

bbox_t op* Top side of the bounding box of the instance image.

bbox_bot t om* Bottom side of the bounding box of the instance image.

Sprites take lots of memory. To draw them fast enough it is important to store them in
video memory. Asindicated in Chapter 14 you can indicate which sprites should be
stored in video memory. Also you can indicate that certain sprites should only be loaded
when needed. These sprites will be discarded again at the end of the level. You can
partialy control this process from code. The following functions exist:

sprite_di scard(nunb) Freesthe (video) memory used for the sprite. If the
sprite has the load-on use property set it will be completely removed. Otherwise,
acopy is maintained in norma memory (of which there is normally enough) such
that the sprite can be restored when needed.

sprite_restore(nunb) Restoresthe spritein (video) memory. Normally this
happens automatically when the sprite is needed. But this might cause a small
hick-up, in particular when load-on-use is set and the sprite is large. So you might
want to force this for example at the beginning of the room in which the spriteis
needed.

di scard_al | () Discard al sprites, backgrounds and sounds that have load-on
use set.

When a game uses a lot of different large sprite images, this makes the game file large
and, hence, the loading dow. Also, if you want to keep them in memory while you need
them, it increases the amount of memory required considerably. Alternatively, you can
distribute the sprite images with the game (as .bmp, .jpg, or .gif files; no other formats
allowed) and load them during the game. There are three routines for this:

sprite_add(fnane, i ngnunb, preci se,transparent, vi deonem | oado
nuse, xori g, yori g) Add the image stored in the file fname to the set of sprite

96

resources. Only bmp, jpg and gif images can be dealt with. When the imageis a
bmp or jpg image it can be a strip containing a number of subimages for the sprite
next to each other. Use imgnumb to indicate their number (1 for a single image).
For (animated) gif images, this argument is not used; the number of images in the
oif fileis used. precise indicates whether precise collision checking should be
used. transparent indicates whether the image is partially transparent, videomem
indicates whether the sprite must be stored in videomemory, and loadonuse
indicates whether the sprite should only be loaded when used. xorig and yorig
indicate the position of the origin in the sprite. The function returns the index of
the new sprite that you can then use to draw it or to assign it to the variable
sprite_index of an instance. When an error occurs —1 is returned.
sprite_replace(ind,fname,inmgnunb, preci se, transparent, vi deom
em | oadonuse, xori g, yori g) Same as above but in this case the sprite with
index ind is replaced. The function returns whether it is successful.

sprite_del et e(i nd) Deletesthe sprite from memory, freeing the memory
used. (It can no longer be restored.)

WARNING: When you save the game during playing, added or replaced sprites are NOT
stored with the save game. So if you load the saved game later, these might not be there
anymore. Also there are some copyright issues with distributing gif files with your
(commercial) application. So better don't use these.

29.3 Backgrounds

Each room can have up to 8 backgrounds. Also it has a background color. All aspects of
these backgrounds you can change in a piece of code using the following variables (note
that some are arrays that range from O to 7, indicating the different backgrounds):

backgr ound_col or Background color for the room.

backgr ound_showcol or Whether to clear the window in the background color.
backgr ound_vi si bl e[0. . 7] Whether the particular background image is
visible.

backgr ound_f or egr ound[0. . 7] Whether the background is actualy a
foreground.

background_i ndex[0. . 7] Background image index for the background.
background_x[0. . 7] X position of the background image.

backgr ound_y[0..7] Y position of the background image.

background_wi dt h[0..7] * Width of the background image.

backgr ound_hei ght [0..7] * Height of the background image.
background_htil ed[0. . 7] Whether horizontally tiled.

background_vtil ed[0..7] Whether vertically tiled.

backgr ound_hspeed[0. . 7] Horizontal scrolling speed of the background
(pixels per step).

background_vspeed[0. . 7] Vertical scrolling speed of the background (pixels

per step).

97

background_al pha[0. . 7] Transparency (alpha) value to use when drawing
the background. A value of 1 isthe normal setting; a value of 0 is completely
transparent. Use with care. Drawing partially transparent backgrounds takes a lot
of time and will slow down the game.

Background images take lots of memory. To draw them fast enough it can be useful to
store them in video memory. Asindicated in Chapter 16 you can indicate which
backgrounds should be stored in video memory. Also you can indicate that certain
backgrounds should only be loaded when needed. These backgrounds will be discarded
again at the end of the level. You can partially control this process from code. The
following functions exist:

backgr ound_di scar d(nunb) Freesthe (video) memory used for the
background image. If the background has the load-on- use property set it will be
completely removed. Otherwise, a copy is maintained in normal memory (of
which there is normally enough) such that the background can be restored when
needed.

backgr ound_r est or e(nunb) Restores the background image in (video)
memory. Normally this happens automatically when the background is needed.
But this might cause a small hick-up, in particular when load-on-use is set and the
background is large. So you might want to force this for example at the beginning
of the room in which the background is needed.

di scard_al | () Discard all sprites, backgrounds and sounds that have load-on
use set.

When a game uses alot of different background images, this makes the game file large
and, hence, the loading slow. Also, if you want to keep them in memory while you need
them, it increases the amount of memory required considerably. Alternatively, you can
distribute the background images with the game (as .bmp, .jpg, or .gif files; no other
formats allowed) and load them during the game. There are three routines for this.
Another use is when you want to let the player choose a background. Also, you might
want to save the image from within the game and use that later as a background (e.g. for a
painting program). Finally, complicated backgrounds, stored as jpg files use alot less
memory. Here are the functions:

backgr ound_add(f nane, t ranspar ent, vi deomrem | oadonuse) Add the
image stored in the file fname to the set of background resources. Only bmp and
jpg images can be dealt with. transparent indicates whether the image is partially
transparent, videomem indicates whether the background must be stored in
videomemory, and loadonuse indicates whether the background should only be
loaded when used. The function returns the index of the new background that you
can then use to draw it or to assign it to the variable background _index[0] to make

it visible in the current room. When an error occurs —1 is returned.
background_repl ace(i nd, f nane, transpar ent, vi deonem | oadonuse

) Same as above but in this case the background with index ind is replaced. The

98

function returns whether it is successful. When the background is currently visible
in the room it wil be replaced aso.

background_del et e(i nd) Deletes the background from memory, freeing the
memory used. (It can no longer be restored.)

WARNING: When you save the game during playing, added or replaced backgrounds are
NOT stored with the save game. So if you load the saved game later, these might not be
there anymore. Also there are some copyright issues with distributing gif files with your
(commercial) application. So better don't use these.

29.4 Tiles

As you should know you can add tiles to rooms. A tileis a part of a background resource.
Tiles are just visible images. They do not react to events and they do not generate
collisons. As aresult, tiles are handled a lot faster than objects. Anything that does not
need events or collisions can best be done through tiles. Also, often one better uses atile
for the nice graphics while a simple object is used to e.g. generate the collision events.

Y ou actually have more control over tiles than you might think. Y ou can add them when
designing the room but you can also add them during the running of the game. Y ou can
change their position, and even scale them or make them partially transparent. A tile has
the following properties:
background. The background resource from which the tile is taken.
left, top, width, height. The part of the background that is used.
X,y. The position of the top left corner of the tile in the room.
depth. The depth of the tile. When designing a room you can only indicate
whether to use background tiles (with depth 1000000) or foreground tiles (with
depth —1000000) but you can actually choose any depth you like, making tiles
appear between object instances.
visible. Whether the tile is visible.
xscale, yscale. Each tile can be drawn scaled (default is 1).
alpha. An aphavalue indicating tile transparency. 1 = not transparent, 0 = fully
trangparent. Y ou should use this with care because partially transparent tiles are
very slow to draw and can lead to problems on certain systems.
To change the properties of a particular tile you need to know itsid. When you ad tiles
when creating rooms the id is shown in the information bar at the bottom. Thereisaso a
function to find the id of atile at a particular position.

The following functions exist that deal with tiles:

til e_add(background, | eft,right,w dth, hei ght, x,y, depth) Addsa
new tile to the room with the indicated values (see above for their meaning). The
function returns the id of the tile that can be used later on.

tile_del ete(id) Deetesthetile with the givenid.

tile find(x,y,foreground) Returnstheid of thetile at position (x,y).
When no tile exists a the position —1 is returned. When foreground is true only
tiles with depth < 0 are returned. Otherwise only tiles with depth >= 0 are

99

returned. When multiple foreground or background tiles exist at the position the
first oneis returned.

tile delete_at(x,y,foreground) Deetesthetilesat position (x,y). When
foreground is true only tiles with depth < 0 are deleted. Otherwise only tiles with
depth >= 0 are deleted. When multiple (foreground or background) tiles exist at
the position all of them are deleted.

tile_exists(id) Returnswhether atile with the given id exists.

tile_get_x(id) Returnsthe xposition of the tile with the given id.

tile _get_y(id) Returnsthe y-position of the tile with the given id.
tile_get_left(id) Returnsthe left value of the tile with the given id.
tile_get top(id) Returnsthe top vaue of the tile with the given id.
tile_get_width(id) Returnsthe width of the tile with the given id.
tile_get _height(id) Returnsthe height of the tile with the given id.
tile_get _depth(id) Returnsthe depth of the tile with the given id.
tile_get_visible(id) Returnswhether the tile with the given id is visible.
tile _get xscal e(id) Returnsthe xscae of the tile with the given id.
tile_get_yscal e(id) Returnstheyscae of the tile with the given id.
tile_get_background(id) Returnsthe background of the tile with the given
id.

tile_get_al pha(id) Returnsthe aphavalue of the tile with the given id.

tile_set_position(id,Xx,y) Setsthe postion of the tile with the given id.
tile set_region(id,left,right,wdth, hei ght) Setstheregion of the
tile with the given id in its background.

tile_set_background(id, background) Setsthe background for thetile
with the given id.

tile_set_visible(id,visible) Setswhether thetile with the givenidis
visible.

tile_set _depth(id,depth) Setsthe depth of the tile with the given id.
tile_set_scal e(id, xscal e, yscal e) Setsthe scaling of the tile with the
given id.

tile_set_al pha(id, al pha) Setsthe apha value of the tile with the given id.

29.5 Drawing functions

It is possible to let objects look rather different from their image. There is awhole
collection of functions available to draw different shapes. Also there are functions to
draw text. You can only use these in the drawing event of an object; these functions don’t
make any sense anywhere else in code (although, see Section 29.8). Please realize that
the graphics hardware in computers only makes the drawing of images fast. So any other
drawing routine will be relatively slow. Also Game Maker is optimized towards drawing
images. So avoid other drawing routines as much as possible. (Whenever possible, create
a bitmap instead.) Also realize that collisions between instances are determined by their

100

sprites (or masks) and not by what you actually draw. The following image related
drawing functions exist:

draw sprite(n,ing, x,y) Drawssubimageimg (-1 = current) of the sprite
with index n with its origin at position (X,y).

draw sprite_scal ed(n,ing, x,y,s) Drawsthe sprite scaled with afactor s.
draw sprite_stretched(n,ing, x,y,w h) Draws the sprite stretched such
that it fills the region with top-left corner (x,y) and width w and height h.

draw sprite_transparent(n,ing,x,y,s, al pha) Drawsthe sprite scaled
with factor s merged with its background. aphaindicates the transparency factor.
A vaue of 0 makes the sprite completely transparent. A value of 1 makes it
completely solid. This function can create great effect (for example partialy
transparent explosions). It is though very sow because it is done in software and,
hence, should be used with care.

dr aw_backgr ound(n, x, y) Draws the background with index n at position
(x.y).

dr aw_background_scal ed(n, x, y, s) Draws the background scaled.
draw_background_stretched(n, x, y, w, h) Draws the background stretched
to the indicated region.

dr aw_background_transparent (n, X, Y, s, al pha) Draws the background
scales with factor s and transparency apha (0-1) (slow!).
draw_background_til ed(n, x, y) Draws the background tiled such that it
fills the entire room.

The following drawing functions draw basic shapes. They use a number of properties, in
particular the brush and pen color that can be set using certain variables.

draw_pi xel (x,y) Drawsapixel at (x,y) inthe brush color.

draw_get pi xel (x, y) Returnsthe color of the pixe at (x,y).

draw fill(x,y) Floodfill from position (x,y) in the brush color.

draw | ine(x1,yl, x2,y2) Drawsalinefrom (x1,yl) to (x2,y2).

draw circl e(x,y, r) Drawsacircleat (x,y) with radiusr.

draw el | i pse(x1,y1, x2,y2) Drawsan dllipse.

draw rectangl e(x1, y1, x2,y2) Drawsarectangle.

draw_roundrect (x1, y1, x2, y2) Drawsarounded rectangle.

draw triangl e(x1,yl, x2,y2, x3, y3) Drawsatriangle.

draw arc(x1,yl, x2,y2, x3, y3, x4, y4) Drawsan arc of an dlipse.
draw_chord(x1, y1, x2,y2, x3,y3, x4, y4) Drawsachord of an ellipse.
draw pi e(x1,y1, x2,y2, x3,y3, x4, y4) Drawsapie of an ellipse.
draw_button(x1, yl1, x2, y2, up) Draws a button, up indicates whether up (1)
or down (0).

draw_t ext (x,y, string) Drawsthestring a position (x,y). A # symbol or
carriage return chr(13) or linefeed chr(10) are interpreted as newline characters. In
this way you can draw multi-line texts.

101

draw text _ext(x,Yy, string, sep,w) Similar to the previous routine but you
can specify two more things. First of all, sep indicated the separation distance
between the lines of text in a multiline text. Use -1 to get the default distance. Use
w to indicate the width of the text in pixels. Lines that are longer than this width
are split-up at spaces or — signs. Use -1 to not split up lines.

dr aw_pol ygon_begi n() Start describing a polygon for drawing.

draw_pol ygon_vertex(x,y) Add vertex (x,y) to the polygon.

draw_pol ygon_end() End the description of the polygon. This function
actually drawsiit.

Y ou can change a number of settings, like the color of the lines (pen), region (brush) and
font, and many other font properties. The effect of these variablesis global! So if you
change it in the drawing routine for one object it also applies to other objects being drawn
later. Y ou can also use these variables in other event. For example, if they don’t change,
you can set them once at the start of the game (which is alot more efficient).

br ush_col or Color used to fill shapes. A whole range of predefined colorsis
available:

c_aqua

c_bl ack

c_bl ue

c_dkgray

c_fuchsia

c_gray

c_green

c line

c_ltgray

C_rmar oon

c_navy

c_olive

c_purple

c red

c_silver

c tea

c_white

c_yel | ow
Other colors can be made using the routine make_col or (r ed, gr een, bl ue),
where red, green and blue must be values between 0 and 255.
brush_st yl e Current brush style used for filling. The following styles are
available:

bs_hol | ow

bs solid

bs_bdi agona

bs_f di agona

bs cross

bs_di agcross

bs_horizonta

bs verti cal

pen_col or Color of the pen to draw boundaries.

102

pen_si ze Size of the penin pixels.
font _col or Color of the font to use.
f ont _si ze Size of the font to use (in points).
f ont _nanme Name of the font (a string).
font _styl e Stylefor the font. The following styles are available:
fs_nornal
fs bold
fs italic
fs bolditalic
f ont _angl e Angle with which the font is rotated (0-360 degrees). For example,
for vertical text use value 90.
font _al i gn Alignment of the text w.r.t. the position given. The following

values can be used
fa_left
fa_center
fa_right

A few miscellaneous functions exist:

string_w dt h(string) Width of the string in the current font as it would
drawn using the draw_text() function. Can be used for precisely positioning
graphics.

string_hei ght (string) Heght of the string in the current font as it would
drawn using the draw_text() function.

string_w dth_ext(string, sep, w) Width of the string in the current font as
it would drawn using the draw_text_ext() function. Can be used for precisely
positioning graphics.

string_hei ght_ext(string, sep, w Heght of the string in the current font
as it would drawn using the draw_text_ext() function.

screen_ganma(r, g, b) Setsthe gamma correction values. r,g,b must be in the
range from —1 to 1. The default is 0. When you use a value smaller than O that
particular color becomes darker. If you use a value larger than O that color
becomes lighter. Most of the time you will keep the three values the same. For
example, to get the effect of lightning you can temporarily make the three values
close to 1. This function works only in exclusive mode!

screen_save(fnane) Savesabmp image of the screen in the given filename.
Useful for making screenshots.

screen_save_part (fnane, |l eft, top, right, bottom Savespart of the
screen in the given filename.

29.6 Views

As you should know you can define up to eight different views when designing rooms. In
this way you can show different parts of the room at different places on the screen. Also,
you can make sure that a particular object always stays visible. Y ou can control the views
from within code. Y ou can make views visible and invisible and change the place or size
of the views on the screen or the position of the view in the room (which isin particular

103

useful when you indicated no object to be visible), you can change the size of the
horizontal and vertical border around the visible object, and you can indicate which
object must remain visible in the views. The latter is very important when the important
object changes during the game. For example, you might change the main character
object based on its current status. Unfortunately, this does mean that it is no longer the
object that must remain visible. This can be remedied by one line of code in the creation
event of al the possible main objects (assuming this must happen in the first view):

{

vi ew_obj ect[0] = object_index;

}

The following variables exist that influence the view. All, except the fird two are arrays
ranging from O (the first view) to 7 (the last view).

vi ew_enabl ed Whether views are enabled or not.

vi ew_current* The currently drawn view (0-7). Use this only in the drawing
event. You can for example check this variable to draw certain things in only one
view. Variable cannot be changed.

vi ew_vi si bl e[0. . 7] Whether the particular view is visible on the screen.
view |l eft[0..7] Left postion of the view in the room.

vi ew_top[0. . 7] Top position of the view in the room.

vi ew_wi dt h[0. . 7] Width of the view (in pixels).

vi ew_hei ght [0. . 7] Height of the view (in pixels).

vi ew x[0.. 7] X-position of the view on the screen.

vi ew_y[0. . 7] Y-position of the view on the screen.

vi ew_hborder[0..7] Sizeof horizontal border around the visible object (in
pixels).

vi ew_vborder[0.. 7] Sizeof vertical border around visible object (in pixels).
vi ew_hspeed[0. . 7] Maxima horizontal speed of the view.

vi ew_vspeed[0. . 7] Maxima vertical speed of the view.

vi ew_obj ect[0.. 7] Object whose instance must remain visible in the view.

Note that the size of the image on the screen is decided based on the visible views at the
beginning of the room. If you change views during the game, they might no longer fit on
the screen. The screen size though is not adapted automatically. So if you need this you
have to do it yourself, using the following variables:

screen_wi dt h Width of the image on the screen, that is, the areain which we

draw. When there are no views, thisisthe same asr oom wi dt h.
screen_hei ght Height of the image on the screen.

29.7 Transitions

As you know, when you move from one room to another you can indicate a transition.
You can also set the transition for the next frame without moving to another room using
the variable called t r ansi ti on_ki nd. If you assign a value between 1 and 13 to it the

104

corresponding transition is used (these are the same transitions you can indicate for the
rooms). A value of O indicates no trangition. It only affects the next time aframe is
drawn. Y ou can also set these variables before going to the next room using code.

transi ti on_ki nd Indicates the next frame transition (0-13).
transition_time Tota time used for the transition (in milliseconds).
transi ti on_st eps Number of steps for the transition.

29.8 Repainting the screen

Normally at the end of each step the room is repainted on the screen. But in rare
circumstances you need to repaint the room at other moments. This happens when your
program takes over the control. For example, before sleeping along time a repaint might
be wanted. Also, when your code displays a message and wants to wait for the player to
press a key, you need arepaint in between. There are two different routines to do this.

screen_r edraw() Redrawsthe room by caling al draw events.
screen_ref resh() Refreshes the screen using the current room image (not
performing drawing events).

To understand the second function, you will need to understand a bit better how drawing
works internally. There is internaly an image on which al drawing happens. This image
is not visible on the screen. Only at the end of a step, after all drawing has taken place,
the screen image is replaced by thisinternal image. (Thisis called double buffering.) The
first function redraws the internal image and then refreshes the screen image. The second
function only refreshes the image on the screen.

Now you should also realize why you couldn't use drawing actions or functions in other
events than drawing events. They will draw things on the interna image but these won't
be visible on the screen. And when the drawing events are performed, first the room
background is drawn, erasing al you did draw on the internal image. But when you use
screen_refresh() after your drawing, the updated image will become visible on the
screen. So, for example, a script can draw some text on the screen, call the refresh
function and then wait for the player to press a key, like in the following piece of code.

{

draw text (screen_wi dth/ 2,100, "' Press any key to continue.');
screen_refresh();
keyboard_wait();

}

Please realize that, when you draw in another event than the drawing event, you draw
smply on the image, not in aview! So the coordinates you use are the same as if there
are no views.

Be careful when using this technique. Make sure you understand it first and realize that
refreshing the screen takes some time.

105

Chapter 30 GML: Sound and music

Sound plays a crucial role in computer games. There are two different types of sounds:
background music and sound effects. Background music normally consists of along
piece of midi music that isinfinitely repeated. Sound effects on the other hand are short
wave files. To have immediate effects, these pieces are stored in memory. So you better
make sure that they are not too long.

Sounds are added to your game in the form of sound resources. Make sure that the names
you use are vaid variable names. There is one aspect of sounds that might be puzzling at
first, the number of buffers. The system can play a wave file only once at the same time.
This means that when you use the effect again before the previous sound was finished,
the previous sound is stopped. Thisis not very appealing. So when you have a sound
effect that is used multiple time simultaneoudly (like e.g. a gun shot) you need to store it
multiple times. This number is the number of buffers. The more buffers for a sound, the
more times it can be played simultaneously, but it also uses more memory. So use this
with care. Game Maker automatically uses the first buffer available, so once you
indicated the number you don’t have to worry about it anymore.

There are four basic functions related to sounds, two to play a sound, one to check
whether a sound is playing, and another to stop a sound. All take the index of the sound
as argument. The name of the sound represents itsindex. But you can aso store the index
in avariable, and use that one.

sound_pl ay(i ndex) Playsthe indicates sound once.

sound_| oop(i ndex) Plays the indicates sound, looping continuoudly.
sound_st op(i ndex) Stops the indicates sound. If there are multiple sounds
with this index playing simultaneously, all will be stopped.

sound_stop_al | () Stopsall sounds.

sound_i spl ayi ng(i ndex) Returnswhether the indicates sound is playing.

It is possible to use further sound effects. These only apply to wave files, not to midi
files. When you want to use specia sound effects, you have to indicate this in the
advanced tab of the sound properties by checking the appropriate box. Note that sounds
that enable effects take more resources than other sounds. So only check this box when
you use the calls below. There are three types of sound effects. First of al you can
change the volume. A vaue of 0 means no sound at al. A value of 1 is the volume of the
original sound. (Y ou cannot indicate a volume larger than the original volume.)
Secondly, you can change the pan, that is, the direction from which the sound comes. A
value of 0 iscompletely at the left. A value of 1 indicates completely at theright. 0.5 is
the default value that isin the middle. Y ou can use panning to e.g. hear that an object
moves from left to right. Finally you can change the frequency of sound. This can be used
to e.g. change the speed of an engine. A value of O isthe lowest frequency; avaueof 1is
the highest frequency.
sound_vol une(i ndex, val ue) Changes the volume for the indicates sound (0
=low, 1 = high).

106

sound_pan(i ndex, val ue) Changes the pan for the indicates sound (0 = left, 1
=right).

sound_f requency(i ndex, val ue) Changes the frequency for the indicates
sound (0 = low, 1 = high).

Sounds use many resources and most systems can store and play only a limited number
of sounds. If you make a large game you would like to have more control over which
sounds are loaded in memory at what times. Y ou can use the |oad-on- use option for
sounds to make sure sounds are only loaded when used. This though has the problem that
you might get a small hick-up when the sound is used first. Also, it does not help much
when you have just one large room. For more control you can use the following
functions.

sound_di scar d(i ndex) Freesthe memory used for the indicated sound.
sound_r est or e(i ndex) Restores the indicated sound in memory.

di scard_al | () Discard all sprites, backgrounds and sounds that have load-on
use set.

When your game uses many different complicated sounds, for example, as background
music, you better not store them al in the game. This makes the game file very large.
Instead, it is better to provide them as separate files with the game and load them when
they are needed. This will aso reduce the loading time of the game. The following three
routines exist for this:

sound_add(f nane, buf fers, ef f ect s, | oadonuse) Adds asound resource
to the game. fname is the name of the sound file. buffers indicates the number of
buffers to be used, and effects and loadonuse indicate whether sound effects are
allowed and whether the sound should be stored in internal memory (true or
false). The function returns the index of the new sound, which can be used to play
the sound. (-1 if an error occurred, e.g. the file does not exist).

sound_repl ace(i ndex, f nane, buffers, effects, | oadonuse) Sameas
the previous function but this time not a new sound is created but the existing
sound index is replaced, freeing the old sound. Returns whether correct.
sound_del et e(i ndex) Deletes the indicated sound, freeing all memory
associated with it. It can no longer be restored.

WARNING: When you save the game during playing, added or replaced sounds are NOT
stored with the save game. So if you load the saved game later, these might not be there
anymore.

Sound is a complicated matter. Midi files are played using the standard multimedia
player. Only one midi file can be played at once and there is no support for sound effects.
For wave files Game Maker uses DirectSound. In this case all wave files are stored in
memory and can have effects. Game Maker actually also triesto play other music files
when you specify them, in particular mp3 files. It uses the standard multimedia player for
this. Be careful though. Whether this works depends on the system and sometimes on

107

other software installed or running. So you are recommended not to use mp3 files when
you want to distribute your games.

There are a'so a number of functions dealing with playing music from a CD:

cd_i ni t () Must be called before using the other functions. Should aso be
called when a CD is changed (or simply from time to time).

cd_present () Returnswhether aCD is present in the default CD drive.
cd_nunber () Returnsthe number of tracks on the CD.

cd_pl ayi ng() Returnswhether the CD is playing.

cd_paused() Returnswhether the CD is paused.

cd_track() Returnsthe number of the current track (1=the first).

cd_I engt h() Returns the length of the total CD in milliseconds.

cd_track_l engt h(n) Returnsthe length of track n of the CD in milliseconds.
cd_posi tion() Returnsthe current position on the CD in milliseconds.
cd_track_position() Returnsthe current position in the track being played
in milliseconds.

cd_play(first,last) Tdlsthe CD to play tracks first until last. If you want
to play the full CD give 1 and 1000 as arguments.

cd_stop() Stopsplaying.

cd_pause() Pausesthe playing.

cd_resunme() Resumesthe playing.

cd_set _posi tion(pos) Setsthe position on the CD in milliseconds.

cd_set _track_position(pos) Setsthe position in the current track in
milliseconds.

cd_open_door () Opensthe door of the CD player.

cd_cl ose_door () Closesthe door of the CD player.

108

Chapter 31 GML: Splash screens, highscores, and other
pPOp-ups

Many games have so-called splash screen. These screens show a video, an image, or
some text. Often they are used at the beginning of the game (as an intro), the beginning of
alevd, or a the end of the game (for example the credits). In Game Maker such splash
screens with text, images or video can be shown at any moment during the game. The
game is temporarily paused while the splash screen is shown. These are the functions to
use:

show_t ext (f nane, ful |, backcol , del ay) Shows atext splash screen.
fname is the name of the text file (.txt or .rtf). You must put this file in the folder
of the game yourself. Also when you create a stand-alone version of your game,
you must not forget to add the file there. full indicates whether to show it in full
screen mode. backcol is the background color, and delay is the delay in seconds
before returning to the game. (The player can always click with the mouse in the
screen to return to the game.)

show i mage(f nane, ful |, del ay) Shows an image splash screen. fnameis
the name of the image file (only .bmp, .jpg and .wmf files). Y ou must put thisfile
in the folder of the game yoursalf. full indicates whether to show it in full screen
mode. delay is the delay in seconds before returning to the game.

show_vi deo(f nane, ful |, | oop) Shows avideo splash screen. fname is the
name of the video file (.avi,.mpg). You must put thisfile in the folder of the game
yourself. full indicates whether to show it in full screen mode. loop indicates
whether to loop the video.

show_i nf o() Displays the game information form.

A number of other functions exist to pop up messages, questions, a menu with choices, or
adialog in which the player can enter a number, a string, or indicate a color or file name:

show_nmessage(str) Displaysadiaog box with the string as a message.
show_nessage_ext (str, but 1, but 2, but 3) Displaysadialog box with the
string as a message and up to three buttons. Butl, but2 and but3 contain the
button text. An empty string means that the button is not shown. The function
returns the number of the button pressed (O if the user presses the Esc key).
show_questi on(str) Displays aquestion; returns true when the user selects
yes and false otherwise.

get _i nteger(str, def) Asksthe player in adiaog box for a number. str is the
message. def is the default number shown.

get _string(str, def) Askstheplayer inadialog box for astring. str is the
message. def is the default value shown.

nmessage_backgr ound(back) Setsthe background image for the pop-up box
for any of the functions above. back must be one of the backgrounds defined in
the game.

109

message_but t on(spr) Setsthe sprite used for the buttons in the pop-up box.
spr must be a sprite consisting of three images, the first indicates the button when
it is not pressed and the mouse is far away, the second indicates the button when
the mouse is above it but not pressed and the third is the button when it is pressed.
nmessage_t ext _font (nane, si ze, col or, styl e) Setsthe font for the text in
the pop-up box.

message_but t on_f ont (nane, si ze, col or, styl e) Setsthefont for the
buttons in the pop- up box.

message_i nput _font (nane, si ze, col or, styl e) Setsthe font for the input
field in the pop- up box.

message_nouse_col or (col) Setsthe color of the font for the buttons in the
pop-up box when the mouse is above it.

nmessage_i nput _col or (col) Setsthe color for the background of the input
filed in the pop- up box.

nmessage_capti on(show, str) Setsthecaptionfor the pop-up box. show
indicates whether a border must be shown (1) or not (0) and str indicates the
caption when the border is shown.

message_posi tion(x,y) Setsthe position of the pop-up box on the screen.
show_nenu(str, def) Shows a popup menu. str indicates the menu text. This
consists of the different menu items with a vertical bar between them. For
example, str = 'menu0jmenuljmenu2’. When the first item is selected a0 is
returned, etc. When the player selects no item, the default value def is returned.
get _col or (def col) Asksthe player for acolor. defcol is the default color. If
the user presses Cancel the value -1 is returned.

get _open_filenane(filter, fnane) Asksthe player for afilename to open
with the given filter. The filter has the form 'namel|maskl|jname2|mask?2|...". A
mask contains the different options with a semicolon between them. * means any
string. For example: "bitmaps]* .bomp;* .wmf'. If the user presses Cancel an empy
string is returned.

get _save filenane(filter,fnane) Asksfor afilenameto save with the
given filter. If the user presses Cancel an empy string is returned.

get _di rectory(dnanme) Asksfor adirectory. dname isthe default name. If the
user presses Cancel an empy string is returned.

get _directory_alt(capt, root) An aternative way to ask for adirectory.
capt is the caption to be show. root is the root of the directory tree to be shown.
Use the empty string to show the whole tree. If the user presses Cancel an empy
string is returned.

show error(str, abort) Displays astandard error message (and/or writes it
to the log file). abort indicates whether the game should abort.

One special pop-up is the highscore list that is maintained for each game. The following
functions exist:

110

hi ghscor e_show(nunb) Shows the highscore table. numb is the new score. If
this score is good enough to be added to the list, the player can input a name. Use
—1 to simple display the current list.

hi ghscore_cl ear () Clearsthe highscore list.

hi ghscor e_add(str, nunb) Adds a player with name str and score numb to
the list.

hi ghscor e_val ue(pl ace) Returnsthe score of the person on the given place
(1-10). This can be used to draw your own highscore list.

hi ghscor e_nane(pl ace) Returnsthe name of the person on the given place
(1-10).

Please realize that none of these pop-ups can be shown when the game runs in exclusive
graphics mode!

111

Chapter 32 GML.: Files, registry, and executing

programs

In more advanced games you probably want to read data from afile that you provide with
the game. For example, you could make a file that describes at what moments certain
things should happen. Also you probably want to save information for the next time the
game s run (for example, the current room). The following functions exist for this:

file_exists(fnane) Returns whether the file with the given name exists
(true) or not (false).
file_del ete(fname) Deetesthe filewith the given name.
file_renanme(ol dnane, newnane) Renames the file with name oldname into
newname.
file_copy(fname, newnare) Copies the file fname to the newname.
file_open_read(fnane) Openstheindicated file for reading.
file_ open_wite(fname) Openstheindicated file for writing, creating it if it
does not exist.
file_open_append(fnanme) Openstheindicated file for appending data at the
end, creating it if it does not exist.
file_close() Closesthe current file (don't forget to call this!).
file_ wite_string(str) Writesthe string to the currently open file.
file_wite_real (x) Writetherea vaueto the currently open file.
file_witel n() Writeanewline character to the file.
file read_string() Readsastring from the file and returns this string. A
string ends at the end of line.
file_read_real () Readsarea value from the file and returns this value.
file_readl n() Skipstherest of thelinein the file and starts at the start of the
next line.
file_eof () Returnswhether we reached the end of the file.
di rect ory_exi st s(dnane) Returns whether the indicated directory does exist.
di rectory_creat e(dnane) Created adirectory with the given name
(including the path towards it) if it does not exist.
file_find_first(mask, attr) Returnsthe name of the first file that satisfies
the mask and the attributes. If no such file exists, the empty string is returned. The
mask can contain a path and can contain wildchars, for example * C\temp*.doc’.
The attributes give the additional files you want to see. (So the normal files are
always returned when they satisfy the mask.) You can add up the following
constant s to see the type of files you want:

fa_readonl y read-only files

f a_hi dden hidden files

fa_sysfil e systemfiles

fa_vol unei d volume-id files

fa_di rect ory directoris

fa_ar chi ve archived files

112

file_find_next() Returnsthe name of the next file that satisfies the
previoudy given mask and the attributes. If no such file exists, the empty string is

returned.
file find_close() Must be called after handling al files to free memory.

file_attributes(fnane, attr) Returnswhether the file has al the
attributes given in attr. Use a combination of the constants indicated above.

If the player has checked secure mode in his preferences, for a number of these routines,
you are not allowed to specify a path, and only files in the application folder can e.g. be
written.

The following three read-only variables can be useful:

gane_i d* Unique identifier for the game. You can use this if you need a unique
file name.

wor ki ng_di r ect or y* Working directory for the game. (Not including the fina
backslash.)

t enp_di rect or y* Temporary directory created for the game. Y ou can store
temporary files here. They will be removed at the end of the game.

In certain situations you might want to give players the possibility to give command line
arguments to the game they are running (for example to create cheats or specia modes).
To get these arguments you can use the following two routines.

par anet er _count () Returns the number of command- line parameters (note
that the name of the program itself is one of them.

par anet er _string(n) Returnscommand-line parameters n. The first
parameter has index 0. Thisis the name of the program.

If you want to store a small amount of information between runs of the game thereisa
simpler mechanism than using a file. You can use the registry. The registry is alarge
database that Windows maintains to keep track of all sorts of settings for programs. An
entry has a name, and avalue. You can use both string and real values. The following
functions exist:

registry wite_string(nane, str) Createsan entry inthe registry with
the given name and string value.

regi stry_wite_real (name, x) Creates an entry in the registry with the
given name and real value.

regi stry_read_string(nane) Returnsthe string that the given name holds.
(The name must exist. otherwise an empty string is returned.)

regi stry_read_real (nane) Returnstherea that the given name holds. (The
name must exist. Otherwise the number O is returned.)

regi stry_exi sts(nanme) Returnswhether the given name exists.

113

Actualy, values in the registry are grouped into keys. The above routines all work on
values within the key that is especially created for your game. Y our program can use this
to obtain certain information about the system the game is running on. Y ou can also read
values in other keys. Y ou can write them also but be very careful. YOU EASILY
DESTROY YOUR SYSTEM thisway. (Write is not allowed in secure mode.) Note that
keys are again placed in groups. The following routines default work on the group
HKEY_CURRENT_USER. But you can change the root group. So, for example, if you
want to find out the current temp dir, use

path = registry_read_string_ext('/Environment',' TEMP);
The following functions exist.

registry_wite_string_ext(key, nane, str) Createsan entry inthe key
in the registry with the given name and string value.
registry_wite_real _ext(key, nanme, x) Creates an entry in the key in the
registry with the given name and real vaue.
registry _read_string_ext(key, name) Returnsthe string that the given
name in the indicated key holds. (The name must exist. otherwise an empty string
isreturned.)
regi stry _read_real ext(key, name) Returnsthe real that the given name
in the indicated key holds. (The name must exist. Otherwise the number O is
returned.)
regi stry_exists_ext (key, nane) Returns whether the given name exists in
the given key.
regi stry_set _root (root) Setstheroot for the other routines. Use the
following values:

0= HKEY_CURRENT_USER

1= HKEY_LOCAL_MACHINE

2= HKEY_CLASSES ROOT

3= HKEY_USERS

Game Maker also has the possibility to start externa programs. There are two functions
available for this: execute_program and execute_shell. The function execute_program
starts a program, possibly with some arguments. It can wait for the program to finish
(pausing the game) or continue the game. The function execute_shell opens afile. This
can be any file for which some association is defined, e.g. an html-file, aword file, etc.
Or it can be a program. It cannot wait for completion so the game will continue.

execut e_progran(prog, ar g, wai t) Execute program prog with arguments

arg. wait indicates whether to wait for finishing.

execut e_shel | (prog, arg) Executes the program (or file) in the shell.

Both functions will not work if the player set the secure mode in the preferences. Y ou can
check this using the read-only variable:

114

secur e_node* Whether the game is running in secure mode.

115

Chapter 33 GML: Multiplayer games

Playing games against the computer is fun. But playing games against other human
players can be even more fun. It is also relatively easy to make such games because you
don't have to implement complicated computer opponent Al. Y ou can of course sit with
two players behind the same monitor and use different keys or other input devices, but it
is alot more interesting when each player can sit behind his own computer. Or even
better, one player sits on the other side of the ocean. Game Maker has multiplayer
support. Please redlize that creating effective multiplayer games that synchronize well
and have no latency is a difficult task. This chapter gives a brief description of the
possibilities. On the website a tutorial is available with more information.

33.1 Setting up aconnection

For two computer to communicate they will need some connection protocol. Like most
games, Game Maker offers four different types of connections: IPX, TCP/IP, Modem,
and Serial. The IPX connection (to be more precise, it is a protocol) works almost
completely transparent. It can be used to play games with other people on the same local
area network. It needs to be installed on your computer to be used. (If it does not work,
consult the documentation of Windows. Or go to the Network item in the control panel of
Windows and add the IPX protocol.) TCP/IP is the internet protocol. It can be used to
play with other players anywhere on the internet, assuming you know their IP address.
On aloca network you can use it without providing addresses. A modem connection is
made through the modem. Y ou have to provide some modem setting (an initialization
string and a phone number) to use it. Finally, when using aseria line (a direct connection
between the computers) you need to provide a number of port settings. There are four
GML functions that can be used for initializing these connections:

npl ay_init_i px() initializes an IPX connection.

npl ay_i ni t_tcpi p(addr) initidizes a TCP/IP connection. addr isastring
containing the web address or |P address, e.g. ‘'www.gameplay.com' or
'123.123.123.12', possibly followed by a port number (e.g. :12"). Only when joining a
session (see below) you need to provide an address. On alocal area network no
addresses are necessary.

npl ay_i nit_noden(i ni t str, phonenr) initializes a modem connection.

i ni tstr istheinitialization string for the modem (can be empty). phonenr isastring
that contains the phone number to ring (e.g. '0201234567'). Only when joining a
session (see below) you need to provide a phone number.

npl ay_init_serial (portno, baudrate, stopbits, parity, flow) initiaizes
aserial connection. por t no isthe port number (1-4). baudr at e is the baudrate to be
used (100-256K). st opbi t s indicates the number of stopbits (0 =1 bit, 1 = 1.5 bit, 2
= 2 bits). pari ty indicates the parity (O=none, 1=odd, 2=even, 3=mark). And f | ow
indicates the type of flow control (O=none, 1=xon/xoff, 2=rts, 3=dtr, 4=rts and dtr).
Returns whether successful. A typical call is mplay_init_serial(1,57600,0,0,4). Give 0
as afirst argument to open a dialog for the user to change the settings.

116

Y our game should call one of these functions exactly once. All functions report whether
they were successful. They are not successful if the particular protocol is not installed or
supported by your machine. To check whether there is a successful connection available
you can use the following function

npl ay_connect _st at us() returns the status of the current connection. 0 = no
connection, 1 = I|PX connection, 2 = TCP/IP connection, 3 = modem connection, and
4 = serid connection.

To end the connection call
npl ay_end() ends the current connection.

When using a TCP/IP connection you might want to tell the person you want to play the
game with what the ip address of your computer is. The following function helps you
here:

npl ay_i paddr ess() returns the | P address of your machine (e.g. '123.123.123.12')
asastring. You can e.g. display this somewhere on the screen. Note that this routine
issow so don't cal it al the time.

33.2 Creating and joining sessions

When you connect to a network, there can be multiple games happening on the same
network. We call these sessions. These different sessions can correspond to different
games or to the same game. A game must uniquely identify itself on the network.
Fortunately, Game Maker does this for you. The only thing you have to know is that
when you change the game id in the options form this identification changes. In this way
you can avoid that people with old versions of your game will play against people with
new versions.

If you want to start a new multiplayer game you need to create a new session. For this
you can use the following routine:

npl ay_sessi on_cr eat e(sesnane, pl aynunb, pl ayer nane) creates a new
session on the current connection. sesnane is a string indicating the name of the
session. pl aynunb is anumber that indicates the maximal number of players
allowed in this game (use O for an arbitrary number). pl aynane is the name of
you as player. Returns whether successful.

One instance of the game must create the session. The other instance(s) of the game
should join this session. Thisis dlightly more complicated. Y ou first need to look what
sessions are available and then choose the one to join. There are three routines important
for this:

npl ay_sessi on_fi nd() searches for al sessions that still accept players and
returns the number of sessions found.

117

npl ay_sessi on_nanme(nunb) returns the name of session number numb (0 is
the first session). This routine can only be called after calling the previous routine.
npl ay_sessi on_j oi n(nunb, pl ayer nane) makes you join session number
nurb (O isthefirst session). pl ayer name is the name of you as a player. Returns
whether successful.

There is one more routine that can change the session mode. Should be called before
creating a session:

npl ay_sessi on_node(nove) setswhether or not to move the session host to
another computer when the host ends. nove should either be true or false (the
default).

To check the status of the current session you can use the following function

npl ay_sessi on_st at us() returns the status of the current session. 0 = no
session, 1 = created session, 2 = joined session.

A player can stop a session using the following routine:
npl ay_sessi on_end() ends the session for this player.

33.3 Players

Each instance of the game that joins a session is a player. Asindicated above, players
have names. There are three routines that deal with players.

npl ay_pl ayer _fi nd() searchesfor all playersin the current session and
returns the number of players found.

npl ay_pl ayer _name(nunb) returns the name of player number nunb (0 is the
first player, which is aways yourself). This routine can only be called after
calling the previous routine.

npl ay_pl ayer _i d(nunb) returns the unique id of player number nunb (0 isthe
first player, which is aways yourself). This routine can only be called after
caling the first routine. Thisid is used in sending and receiving messages to and
from individua players.

33.4 Shared data

Shared data communication is probably the easiest way to synchronize the game. All
communication is shielded from you. There is a set of 10000 values that are common to
all entities of the game. Each entity can set values and read values Game Maker makes
sure that each entity sees the same values. A value can either be area or a string. There
arejust two routines:

npl ay_data write(ind, val)writevaueval (stringor rea) into location
i nd (i nd between 0 and 10000).

118

npl ay_dat a_r ead(i nd) returns the value in location i nd (i nd between 0 and
10000). Initialy all values are 0.

To synchronize the data on the different machines you can either use a guaranteed mode
that makes sure that the change arrives on the other machine (but which is slow) or non
guaranteed. To change this use the following routine:

npl ay_dat a_npbde(guar) sets whether or not to use guaranteed transmission for
shared data. guar should either be true (the default) or false.

33.5 Messages

The second communi cation mechanism that Game Maker supports is the sending and
receiving of messages. A player can send messages to one or all other players. Players
can see whether messages have arrived and take action accordingly. Messages can be sent
in a guaranteed mode in which you are sure they arrive (but this can be slow) or in a non
guaranteed mode, which is faster.

The following messaging routines exist:

npl ay_nessage_send(pl ayer, i d, val) sends a message to the indicated
player (either an identifier or a name; use 0 to send the message to all players). i d
is an integer message identifier and val isthe value (either areal or astring). The
message is sent in non-guaranteed mode.

npl ay_nessage_send_guar ant eed(pl ayer, i d, val) sends a message to
the indicated player (either an identifier or a name; use 0 to send the message to
al players). i d is an integer message identifier and val isthe value (either areal
or astring). Thisis a guaranteed send.

npl ay_nessage_r ecei ve(pl ayer) receives the next message from the
message queue that came from the indicated player (either an identifier or a
name). Use 0 for messages from any player. The routine returns whether there
was indeed a new message. If so you can use the following routines to get its
contents:

npl ay_message_i d() Returnsthe identifier of the last received message.

npl ay_nessage_val ue() Returnsthe value of the last received message.
npl ay_nessage_pl ayer () Returnsthe player that sent the last received
message.

npl ay_nessage_nane() Returnsthe name of the player that sent the last
received message.

npl ay_nessage_count (pl ayer) Returnsthe number of messages left in the
gueue from the player (use O to count all message).

npl ay_nessage_cl ear (pl ayer) Removes all messages left in the queue
from the player (use O to remove al message).

A few remarks are in place here. First of al, if you want to send a message to a particular
player only, you will need to know the players unique id. Asindicated earlier you can

119

obtain this with the function npl ay_pl ayer _i d() . This player identifier is also used
when receiving messages from a particular player. Alternatively, you can give the name
of the player as a string. If multiple players have the same name, only the first will get the

message.

Secondly, you might wonder why each message has an integer identifier. The reason is
that this helps your application to send different types of messages. The receiver can
check the type of message using the id and take appropriate actions. (Because messages
are not guaranteed to arrive, sending id and value in different messages would cause
serious problems.)

120

Chapter 34 GML: Using DLL's

In those cases were the functionality of GML is not enough for your wishes, you can
actually extend the possibilities by using plug-ins. A plug-in comesin the form of aDLL
file (@ Dynamic Link Library). In such aDLL file you can define functions. Such
functions can be programmed in any programming language that supports the creation of
DLL's (e.g. Delphi, Visual C++, Visua Basic, etc.) You will though need to have some
programming skill to do this. Plug-in functions must have a specific format. They can
have zero, one or two arguments, each of which can either be areal number (double in C)
or anull-terminated string. They must return either area or a null-terminated string.

In Delphi you create a DLL by first choosing New from the File menu and then choosing
DLL. Hereisan example of aDLL you can use with Game Maker written in Delphi.
(Note that thisis Delphi code, not GML code!)

library MyDLL;

uses SysUtils, Cl asses;

function MYM n(x,y:real):real; cdecl;
begi n

if x<y then Result := x else Result :=vy;
end;

var res : array[0..1024] of char;

function Doubl eString(str:PChar): PChar; cdecl;
begin

Str Copy(res,str);

StrCat(res,str);

Result := res;
end;

exports MyM n, Doubl eString;

begin
end.

This DLL defines two functions: MyM n that takes two real arguments and returns the
minimum of the two, and Doubl eSt ri ng that doubles the string. Note that you have to
be careful with memory management. That iswhy | declared the resulting string global.
Also notice the use of the cdecl calling convention. Thisis required. Once you build the
DLL in Delphi you will get afile MyDLL. DLL. This file must be placed in the running
directory of your game. (Or any other place where windows can find it.)

To use this DLL in Game Maker you first need to specify the externa functions you want

to use and what type of arguments they take. For this there are the following functionsin
GML:

121

ext er nal _defi ne0(dl |, nane, rest ype) Defines an exterral function
without arguments. di | isthe name of the dll file. nane is the name of the
functions. And r est ype isthe type of the result. For thisuse eitherty _real or
ty_string.

ext ernal _definel(dll, nane, argltype,restype) Definesan externa
function with one arguments. Same as above but now ar g1t ype isthe type of the
first argument. For thisagain use eitherty_real orty_string.

ext ernal _defi ne2(dl |, nane, ar glt ype, ar g2t ype, r est ype) Defines

an external function with two arguments.
external _define3(dl |, nane, ar glt ype, ar g2t ype, arg3type, restyp

e) Defines an external function with three arguments.

ext ernal _define4(dl |, nane, argltype, ar g2t ype, arg3type, argaty
pe, r est ype) Defines an external function with four arguments.

ext ernal _define5(dl |, nane, rest ype) Definesanexterna function with
five real arguments. (Strings are not possible with more than 4 arguments).

ext ernal _define6(dl |, nane, restype) Definesan external function with
six real arguments. (Strings are not possible with more than 4 arguments).

ext ernal _define7(dl |, nane, rest ype) Definesan external function with
fseven real arguments. (Strings are not possible with more than 4 arguments).
ext ernal _define8(dl |, nane, restype) Definesan external function with
eight real arguments. (Strings are not possible withmore than 4 arguments).

Each of these functions returns the id of the external function that must be used for
calling it. So in the above example, at the start of the game you would use the following
GML code:

{

gl obal . mm =
external _define2(' MYOMWN. DLL' ," MM n' ,ty_real ,ty_real ,ty_real);
gl obal . ddd =
external _definel(' MPYOMN. DLL' , Doubl eString,ty _string,ty_string);
}

Now whenever you need to cal the functions, use e.g.

{

aaa
SSS

}

external _call 2(gl obal . mm x, y);
external _call 1(gl obal .ddd, Hello');

So there are the following calling functions:

external _cal | O(i d) Calsthe externa function with the given id, that has no
arguments.

external _call 1(id, argl) Cdlsthe externa function with the given id, that
has one argument.

external _call 2(id, argl, arg2) Cadlsthe external function with the given

id, that has two arguments.

122

external call 3(id, argl, arg2, arg3) Cdlsthe externa function with the
given id, that has three arguments.

external call 4(id, argl, arg2, arg3, ar g4) Callsthe external function
with the given id, that has four arguments.

external call5(id, argl, arg2, arg3, ar g4, ar g5) Callsthe external
function with the given id, that has five arguments.

external _call 6(id, argl, arg2, arg3, arg4, ar g5, ar g6) Cdlsthe
external function with the given id, that has six arguments.

external call7(id,argl, arg2, arg3, arg4, ar g5, ar g6, arg7) Calsthe
external function with the given id, that has seven arguments.

external _call 8(id, argl, arg2, arg3, ar g4, ar g5, ar g6, ar g7, arg8)
Calls the external function with the given id, that has eight arguments.

Y ou might wander how to make a function in a DLL that does something in the game.
For example, you might want to create a DLL that adds instances of objects to your
game. The easiest way isto let your DLL function return a string that contains a piece of
GML code. This string that contains the piece of GML can be executed using the GML
function

execut e_string(str) Executethe piece of codein the string str.

Alternatively you can let the DLL create a file with a script that can be execute (this
function can also be used to later modify the behavior of a game).

execut e_fil e(fnane) Execute the piece of code in thefile.

Now you can call an external function and then execute the resulting string, e.g. as
follows:

{
ccc = external _call 2(gl obal . mm x, y);

execute_string(ccc);

}

In some rare cases your DLL might need to know the handle of the main graphics
window for the game. This can be obtained with the following function and can then be
passed to the DLL:

wi ndow_handl e() Returns the window handle for the main window.

Note that DLLs cannot be used in secure mode.

Using external DLLs s an extremely powerful function. But please only use it if you
know what you are doing.

123

